Struktur eines neuen Werkzeugs für Gentherapie aufgeklärt
Ein besonderes Schneideprotein der bakteriellen Abwehr gegen Viren kann nämlich die Buchstabenfolge der DNA lesen und diese ganz gezielt schneiden. Biochemiker der Universität Zürich zeigen den Wirkmechanismus erstmals in Bildern.
Krankmacher können auch selber krank werden: Wie Mensch und Tier werden auch Bakterien von Viren angegriffen, so etwa von Bakteriophagen. Als Schutz haben viele Bakterien eine Art Immunsystem entwickelt. Mithilfe eines spezifischen Abwehrsystems können die Bakterien fremde DNA-Abschnitte, die Viren eingeschleust haben, erkennen und zerstören. Ein zentraler Bestandteil dieses sogenannten CRISPR-Abwehrsystems (Clustered Regularly Interspaced Short Palindromic Repeats) ist ein bestimmtes Protein, das Protein Cas9. Dieses kann in Zusammenarbeit mit bestimmten kurzen RNA-Sonden die fremde DNA gezielt erkennen, schneiden und so deaktivieren.
«Das Cas9-Protein funktioniert wie eine molekulare Schere», erklärt Prof. Martin Jinek vom Biochemischen Institut der Universität Zürich. Eine Fähigkeit, die bald nicht nur für die Bakterien nützlich sein könnte: Das Schneideprotein könnte auch der Molekularen Medizin und der Gentherapie zugutekommen, denn es kann bestimmte Buchstabenfolgen im genetischen Code genau erkennen und dort schneiden. Jinek kann nun im Wissenschaftsjournal «Science» erstmals die 3D-Struktur dieses Cas9-Proteins und dessen grundlegenden Wirkungsmechanismus zeigen.
Bakterielles Protein kann DNA hochpräzis schneiden
Die Bilder aus der Röntgenstrukturanalyse und der Elektronenmikroskopie sind faszinierend: Das Cas9-Protein ist ein halbmondförmiges Molekül mit zwei Lappen, welche Gruben enthalten, die schliesslich an die RNA-Sonden und an die fremde DNA binden. Die Aufnahmen der beiden Forschungsgruppen um Martin Jinek vom Biochemischen Institut und um Prof. Jennifer Doudna und Prof. Eva Nogales der University of California in Berkeley enthüllen erstmals auch den Schneidemechanismus des Moleküls Schritt für Schritt: Beim gleichzeitigen Binden an die RNA-Sonden und die fremde DNA verändert das Protein seine dreidimensionale Struktur drastisch, die beiden Lappen berühren sich und bilden einen Kanal, in dem schliesslich das Schneiden der DNA erfolgt. «Wichtig zu erkennen ist, dass das Protein nicht eigenständig schneiden kann, sondern die Bindung an die kurze RNA-Sonde braucht, um die richtige Form anzunehmen und die richtige DNA zu erkennen», erklärt der Zürcher Biochemiker.
Hohes Potenzial für die Gentherapie
Das Verständnis von Mechanismus und Struktur des Cas9-Proteins ist gemäss Jinek wichtig, wenn dieses später als Werkzeug in der Gentherapie genutzt werden soll. Durch gezielte Veränderungen könnte das Schneideprotein künftig auch eine Ziel-DNA in gewünschter Art und Weise schneiden – und so bestenfalls eine «präzise Korrektur eines Genabschnittes vornehmen, der zu einer Generkrankung führt», blickt Jinek in die Zukunft. Das Potenzial des Proteins werde hoch eingeschätzt, so der Biochemiker: Das «Science Magazine» hatte letztes Jahr das Cas9-Protein als revolutionäres Werkzeug der Gentechnik in den «Top 10 Breakthroughs of 2013» aufgeführt.
Literatur:
Martin Jinek, Eva Nogales, Jennifer A. Doudna et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, February 6, 2014. Doi:10.1126/science.1247997
Media Contact
Weitere Informationen:
http://www.uzh.chAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…