„Tanz der Ladungen“
…ermöglicht neue Art der chemischen Reaktivität.
Neue Studie ermöglicht beispiellose Form der Alkentransformation.
Ein Team der Universität Wien unter der Leitung von Nuno Maulide hat eine neue Methode zur Umwandlung von Alkenen in komplexere Produkte entwickelt. Alkene sind Bausteine, die in verschiedensten Anwendungen – von Pharmazeutika bis Petrochemie – nötig sind und deren Transformation in andere Produkte von besonderem Interesse ist. Der innovative Ansatz der Chemiker*innen: Sie nutzen „tanzende“ positive Ladungen für die Alkentransformation, und umgehen damit die bisherige Notwendigkeit zusätzlich eingebauter Molekülfragmente. Letztere waren oft unerwünschte Bestandteile und mussten nach der Umwandlung wieder entfernt werden – der neue Prozess ist also um einiges effizienter. Die neue Methode und ihre Anwendungen wurden aktuell im renommierten Journal Nature veröffentlicht.
Alkene sind organische Moleküle mit einer Kohlenstoff-Kohlenstoff-Doppelbindung und sind seit langem von immenser kommerzieller Bedeutung – so finden Alkene unter anderem Anwendungen in der Petrochemie bis hin zur Herstellung von Pharmazeutika und Düften. Während eine breite Palette von Methoden zur Umwandlung von Alkenen in andere Verbindungen zum Standardrepertoire der organischen Chemie gehört, waren diese Methoden bisher doch begrenzt. Bogdan Brutiu, PhD-Student an der Universität Wien und Erstautor der Studie, erklärt: „Unser Durchbruch ergab sich aus der Berücksichtigung der Einschränkungen klassischer Methoden zur Alkentransformation. Während die Mehrheit der bekannten Reaktionen nämlich nur eine Funktionalisierung an den beiden Kohlenstoffatomen ermöglicht, die das Alken bilden, waren wir bestrebt, dieses Paradigma zu durchbrechen.“
Tatsächlich macht die Natur der Alkene die sogenannte 1,2-Difunktionalisierung, d.h. das Hinzufügen von Fragmenten zu den beiden Kohlenstoffatomen des Alkens, zur einfachsten Art der Alkentransformation (siehe Abbildung 1A). Die Verwendung des Alkens als Anker für die Funktionalisierung anderer Positionen innerhalb eines Moleküls erforderte bisher den Einsatz zusätzlicher Molekülfragmente, sogenannter „dirigierender Gruppen“, um den Erfolg zu garantieren (siehe Abbildung 1B). Der Nachteil solcher Ansätze besteht darin, dass die dirigierende Gruppe häufig ein unerwünschtes Fragment ist, das anschließend entfernt werden muss.
Das Team von Chemiker Nuno Maulide am Institut für Organische Chemie der Universität Wien hatte eine andere Idee. „Wir haben zwei Gedanken kombiniert. Erstens haben wir die bekannte Tatsache genutzt, dass bei Zugabe bestimmter Gruppen zu einer Position des Alkens eine Ladung erzeugt wird. Wir haben uns einfach gefragt, ob diese Ladung dazu gebracht werden könnte, sich weiter zu bewegen, um sich neu zu positionieren“, erläutert Giulia Iannelli von der Universität Wien, die als Co-Erstautorin an der Studie beteiligt war. Während die Wanderung der positiven Ladung selbst schon ein innovativer Ansatz ist, ist es die Steuerung dieser Wanderung, die die Methode so innovativ macht: dieselbe Gruppe, die eingeführt wird um die Ladung zu erzeugen, diktiert auch, wohin sie wandert. Denn, so der Ansatz der Forscher*innen, sobald die positive Ladung eine definierte Position erreicht hat, wir sie durch die vorher eingebrachte Gruppe an Ort und Stelle fixiert, bis eine weitere Funktionalisierung dieser Position stattfinden kann (Abbildung 2).
Zusammengefasst ist dieses Konzept trügerisch einfach: Durch die Addition eines Bestandteils an ein Alken, wird eine Ladung erzeugt, die um das Molekül herumtanzt, bis sie sich an einer Position befindet, an der sie durch denselben Bestandteil, der zuvor eingeführt wurde, immobilisiert werden kann.
Obwohl das Konzept einfach erscheint, erwies sich die Übertragung dieser Idee ins Labor als herausfordernd. „Wir mussten zuerst untersuchen, was die ideale Reaktionstemperatur und -dauer sind und wie Reagenzien und Lösungsmittel optimiert werden müssen, damit die Reaktion wie geplant ablaufen konnte“, sagt Nuno Maulide und fügt hinzu: „Wenn man jedoch das endgültige Ergebnis sieht, könnten sich im Grunde genommen die meisten organischen Chemiker*innen fragen: ‚Warum bin ich nicht selbst darauf gekommen?‘. Es ist großartig, dass das Endergebnis dann so einfach erscheint.“
Der Reiz dieser bahnbrechenden Technik liegt nicht nur in ihrer konzeptionellen Schönheit und Einfachheit, sondern auch in den dadurch eröffneten synthetischen Möglichkeiten. Während etablierte Methoden zur Alkentransformation, zusätzliche Gruppen benötigen, um selektive Reaktionen zu ermöglichen, funktioniert die Methode der Maulide-Gruppe sogar bei einem der einfachsten Alkene, 1-Buten – eine Verbindung, die für alle vorherigen Methoden außer Reichweite lag.
Nuno Maulide betont außerdem die praktischen Auswirkungen und erklärt: „Unsere Methode hat auch die schnelle Erzeugung eines bioaktiven Wirkstoffs, 4 Ipomeanol, aus einfachen Bausteinen ermöglicht (Anm. siehe Abbildung 3). Hierbei konnte die Anzahl der synthetischen Schritte von fünf auf nur einen reduziert werden. Dies verspricht viele zusätzliche Anwendungen, die wir erforschen wollen.“ In weiterer Folge können so beispielsweise bei der Medikamentenerzeugung Kosten, Zeit und Ressourcen gespart werden.
Wissenschaftliche Ansprechpartner:
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie, Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-52155
nuno.maulide@univie.ac.at
www.univie.ac.at
Originalpublikation:
Bogdan R. Brutiu, Giulia Iannelli, Margaux Riomet, Daniel Kaiser and Nuno Maulide: Stereodivergent 1,3-difunctionalization of alkenes by charge relocation
DOI: 10.1038/s41586-023-06938-0
https://www.nature.com/articles/s41586-023-06938-0
Weitere Informationen:
https://medienportal.univie.ac.at/media/aktuelle-pressemeldungen/detailansicht/a…
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…