Tor zur Therapie mit humanen Muskelstammzellen aufgestoßen

Muskelzelle (rot) mit Muskelstammzellen des Menschen (grün) (Photo: Andreas Marg/Copyright: ECRC)

Wie es aber doch gehen könnte, zeigen jetzt Dr. Andreas Marg und Prof. Simone Spuler vom Experimental and Clinical Research Center (ECRC) des Max-Delbrück-Centrums (MDC) und der Berliner Charité. Sie entwickelten eine Methode, mit der sie Muskelstammzellen nicht isoliert, sondern mit ihrer Muskelfaser kultivieren, vermehren und transplantieren. Bei Mäusen konnten sie damit bereits Muskeln regenerieren. Sie haben damit das Tor für den Einsatz von Muskelstammzellen für die Therapie von Muskelerkrankungen aufgestoßen.*

„Muskelstammzellen, die wir auch Satellitenzellen nennen, können nach jahrzehntelanger Ruhe in ihrer Stammzellnische erwachen und einen geschädigten Muskel reparieren“, erläutert Prof. Spuler. Die Neurologin leitet am ECRC in Berlin-Buch die Hochschulambulanz für Muskelkrankheiten der Charité und erforscht mit ihrem Team die Ursachen dieser Erkrankungen. Satellitenzellen sind auch bei Menschen mit schweren Muskelerkrankungen aktiv, etwa bei der Muskeldystrophie Duchenne, einer schweren, genetisch bedingten Erkrankung, bei der sich die Muskeln abbauen. „Doch irgendwann ist das Reservoir an Muskelstammzellen erschöpft und der Muskelabbau kann nicht mehr gestoppt werden“, so Prof. Spuler.

Alle Versuche, mit der Transplantation von Satellitenzellen bei Patienten mit Duchenne Muskeldystrophie Muskeln wieder aufzubauen, sind gescheitert. Die transplantierten Zellen sind nicht lebensfähig. Wenig erfolgreich war auch der Einsatz anderer Zellen, die ebenfalls das Potential haben, Muskeln zu regenerieren. Diese Zellen können nur in begrenztem Maß Muskelgewebe reparieren. Aber wie kann es gelingen, das körpereigene Selbsterneuerungs- und Wiederaufbaupotential von Satellitenzellen doch noch zu nutzen?

Das Angebot der Entwicklungsbiologin Prof. Dr. Carmen Birchmeier (MDC) im Rahmen eines Verbundprojekts zu Satellitenzellen (SatNet) des Bundesforschungsministeriums mitzuarbeiten, brachte Prof. Spuler und ihre Mitarbeiter auf die Spur. In dem Projekt wurde unter anderem untersucht, weshalb Satellitenzellen schnell ihr Regenerationspotential verlieren, wenn sie in Zellkultur gehalten werden. Daraus entstand die Idee, Satellitenzellen zusammen mit dem sie umgebenden Muskelgewebe zu kultivieren und zu sehen, ob die Zellen, wenn ihr vertrautes Milieu erhalten bleibt, möglicherweise besser regenerieren.

Muskelbiopsien von jungen und von alten Spendern
Von Neurochirurgen des Helios Klinikums Berlin-Buch, das ebenso wie das MDC in unmittelbarer Nähe zum ECRC liegt, erhielten Prof. Spuler und Dr. Marg – nach Aufklärung und schriftlicher Einwilligung – von Patienten im Alter zwischen 20 und 80 Jahren frische Gewebeproben von Oberschenkelmuskeln. Aus den Biopsien gewannen Prof. Spuler und ihre Mitarbeiter über 1 000 Muskelfaserfragmente, jedes etwa 2-3 Millimeter lang. Für die Forscher ist bemerkenswert, dass die Anzahl der Stammzellen in den einzelnen Gewebeproben unabhängig vom Alter des Spenders war und dass sich aus wenigen Satellitenzellen tausende von Myoblasten entwickelten. Diese Zellen fusionieren nach weiteren Entwicklungsschritten zu Muskelfasern.

Dr. Marg: „Satellitenzellen brauchen ihr ,Hausʽ um sich herum“
Prof. Spuler und ihre Mitarbeiter kultivierten die Muskelfaserfragmente mit den Satellitenzellen zunächst für bis zu 3 Wochen. In dieser Zeit vermehrten sich die Satellitenzellen um das 20- bis 50fache, aber auch zahlreiche Bindegewebszellen entwickelten sich in diesen Kulturen. Um das zu verhindern, unterzogen sie die Muskelfragmente gleichzeitig einem Sauerstoffentzug (Hypoxie) und einer Kühlung (Hypothermie) bei 4 Grad Celsius. Unter diesen Bedingungen können nur Satellitenzellen in ihrer Stammzellnische überleben, nicht aber die Bindegewebszellen. „Offenbar erhalten die Satellitenzellen im eigenen ,Hausʽ die notwendige Versorgung“, so Dr. Marg.

Erstmals Satellitenzellen des Menschen kultiviert und vermehrt
Erstmals ist es den ECRC-Forschern mit ihren Versuchen gelungen zu zeigen, dass es möglich ist, Satellitenzellen des Menschen zu kultivieren, zu vermehren und ihr Regenerationspotential für einige Wochen zu erhalten. Damit haben sie eine wichtige Voraussetzung für die Nutzung patienteneigener Zellen für die Therapie geschaffen.

Erster Erfolg in Mäusen
Ihren Therapieansatz untersuchten die ECRC-Forscher dann in Mäusen, deren Muskelregeneration durch Bestrahlung unterbunden worden war. In den vorderen Schienbeinmuskel transplantierten sie Muskelfragmente mit den darin enthaltenen Satellitenzellen, die sie nach Hypothermie für 2 Wochen in Zellkultur gehalten hatten. Und es zeigte sich, dass die Muskeln der Tiere, die mit diesen Faserfragmenten behandelt wurden, besonders gut regenerierten.

Ziel: Satellitenzellen mit Gentherapie zu koppeln
Doch mit der Transplantation von Muskelfragmenten allein kann eine genetisch bedingte Muskelerkrankung nicht erfolgreich behandelt werden. Prof. Spuler: „Die Idee ist deshalb, die Satellitenzellen zusätzlich mit einem gesunden Gen zu bestücken, das den Gendefekt repariert, und sie dann mit Hilfe eines nicht-viralen Gentaxis in die zu behandelnden Muskeln einzubringen“. Dass das im Prinzip geht, haben Prof. Spuler und ihre Mitarbeiter in einem ersten Versuch mit einem „Reporter-Gen“ in der Petrischale gezeigt. Es leuchtet grün, wenn es in die Satellitenzelle eingebracht wurde. Als Gentaxi nutzten sie das Transposon „Dornröschen“ – ein springendes Gen, das seinen Ort im Genom verändern kann. Es wurde vor einigen Jahren von Dr. Zsuzsanna Izsvák (MDC) und Dr. Zoltán Ivics (Paul-Ehrlich-Institut, Frankfurt) entwickelt und gilt als vielversprechendes Vehikel für die Gentherapie.

Bevor die von Prof. Spuler und ihrer Gruppe entwickelte Methode für Patienten nutzbar gemacht werden kann, müssen aber noch einige Hürden genommen werden. Bislang gelingt die Transplantation in kleinen Mäusemuskeln. Ob diese Technik auch in großen Oberschenkelmuskeln des Menschen angewendet werden kann, die unter Umständen durch eine Muskelkrankheit stark verändert sind, wollen die Wissenschaftler und Ärzte in klinischen Versuchen überprüfen.

*Journal of Clinical Investigation, http://dx.doi.org/10.1172/JCI63992
Human satellite cells have regenerative capacity and are genetically manipulable
Andreas Marg1, Helena Escobar2, Sina Gloy1,*, Markus Kufeld3, Joseph Zacher4, Andreas Spuler5, Carmen Birchmeier6, Zsuzsanna Izsvák2, Simone Spuler1
1 Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the
Max Delbrück Center for Molecular Medicine, Berlin
2 Mobile DNA, Max Delbrück Center for Molecular Medicine, Berlin
3 Clinic for Radiation Oncology and Radiotherapy, Charité Universitätsmedizin Berlin
4 Dept. of Orthopedic Surgery, HELIOS Klinikum Berlin-Buch, Berlin
5 Dept. of Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin
6 Developmental Biology / Signal transduction, Max Delbrück Center for Molecular Medicine, Berlin
*present address: Pediatric Hospital St. Nikolaus, Viersen, Germany

Kontakt:
Barbara Bachtler
Leiterin Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: 030/ 9406 – 3896
Fax: 030/ 9406 – 3833
E-Mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Verena Wolff
Pressereferentin
GB Unternehmenskommunikation
Charité – Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Tel.: 030/ 450 570 – 502
Fax: 030/ 450 570 – 940
E-Mail: verena.wolff@charite.de
http://www.charite.de

Media Contact

Barbara Bachtler Max-Delbrück-Centrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Methode für das Design künstlicher Proteine

Große neue Proteine entwerfen mit KI. Passgenaue Antikörper für Therapien, Biosensoren für Diagnosen oder Enzyme für chemische Reaktionen herzustellen – das sind Ziele des Proteindesigns. Ein internationales Forschungsteam hat nun…

Die ersten Nahaufnahmen eines Sterns außerhalb unserer Galaxie

„Zum ersten Mal ist es uns gelungen, ein vergrößertes Bild eines sterbenden Sterns in einer Galaxie außerhalb unserer eigenen Milchstraße aufzunehmen“, sagt Keiichi Ohnaka, Astrophysiker an der Universidad Andrés Bello…

Parkinson-Medikament verändert durch Eisenmangel das Darmmikrobiom zum Schlechteren

Störung der mikrobiellen Gemeinschaft begünstigt Krankheitserreger im Darm. In einer bahnbrechenden neuen Studie, durchgeführt im Rahmen des FWF-geförderten Exzellenzclusters „Mikrobiomes drive Planetary Health“, haben Wissenschafter*innen der Universität Wien in Zusammenarbeit…