Ultradünn und sehr aktiv

Quervernetzung von Pepsinmolekülen zu enzymatisch aktiven Membranen (c) Wiley-VCH

Zwei Verfahrensschritte in einem – das erledigen neuartige enzymatisch aktive Membranen. Die ultradünnen Enzymfilme entstehen durch Quervernetzung von Pepsin auf einem porösen Träger und sind in der Lage, gleichzeitig Proteine enzymatisch zu spalten und die Spaltprodukte abzutrennen.

Das Herstellverfahren für die Membranen ist sehr einfach, auch für andere Enzyme geeignet und ließe sich großtechnisch realisieren, wie ein niederländisch-deutsches Wissenschaftlerteam in der Zeitschrift Angewandte Chemie berichtet.

Pepsin ist ein wichtiges Verdauungsenzym, eine sogenannte Protease, also ein Enzym, das Peptidbindungen spaltet. Im Magen schneidet es Eiweißmoleküle in kleinere Peptidfragmente. Auch in der Lebensmittelindustrie werden Proteasen eingesetzt, etwa bei der Herstellung von Käse oder zur Beseitigung von Trübungen in Getränken wie Wein, Bier oder Fruchtsäften. Spezielle Proteasen werden auch zur Herstellung von hypoallergener Nahrung eingesetzt. Die Proteasen bauen dabei gezielt allergene Proteine ab.

Werden die Proteasen in gelöster Form verwendet, ergeben sich jedoch eine Reihe von Nachteilen: Die Enzyme sind nicht stabil, da sie sich gegenseitig spalten können. Eine Rückgewinnung ist nicht praktikabel, das treibt die Kosten in die Höhe. Lösliche Enzyme sollten auch nicht im behandelten Getränk verbleiben, laut Reinheitsgebot ist dies für Bier in Deutschland sogar verboten. Immobilisierte Enzyme können dagegen rückgewonnen und mehrfach eingesetzt werden.

Eine Immobilisierung kann durch Fixierung auf einem Substrat oder durch eine Quervernetzung des Enzyms erreicht werden. Das Team um Nieck E. Benes (Universität Twente, Enschede, Niederlande) und Matthias Wessling (RWTH Aachen und DWI—Leibniz-Institut für Interaktive Materialien, Aachen) hat nun einen einfachen Weg entwickelt, der beide Prinzipien vereint:

Die Forscher benetzen eine hauchfeine poröse Polymermembran mit der Protease und lösten anschließend mit dem Reagenz Trimesoyl-Chlorid eine Quervernetzung der Moleküle aus. Die Pepsinmoleküle werden dabei so engmaschig verknüpft, dass ein homogener Film entsteht, während das Pepsin weiterhin in der Lage ist, passende Substrate unter sauren Bedingungen abzubauen. Die Aktivität bleibt lange erhalten, da die Enzyme sich nicht selbst verdauen können.

Große Moleküle werden von den nur 50 bis 150 nm dünnen Pepsin-Membranen zurückgehalten, während die kleineren Spaltungsprodukte die Membran rasch passieren und auf diese Weise leicht abgetrennt werden können. So lässt sich eine kontinuierliche Prozessführung realisieren.

Angewandte Chemie: Presseinfo 10/2015

Autor: Matthias Wessling, RWTH Aachen (Germany), http://www.avt.rwth-aachen.de/AVT/index.php?id=68&showUid=592&L=1

Permalink to the original article: http://dx.doi.org/10.1002/ange.201411263

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

http://presse.angewandte.de

Media Contact

Dr. Renate Hoer GDCh

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…