Vom Geranienduft zum Hustenlöser: Katalysator hilft beim Bau komplexer biologischer Gerüste
Chemiker der Technischen Universität München (TUM) haben nun einen Katalysator entwickelt, der genau solche Verbindungen entstehen lässt. Das Besondere daran: Auch der Katalysator baut sich selbst aus kleineren Einheiten zusammen.
Mit großer Eleganz baut die Natur komplizierte Strukturen aus einfachen Bausteinen auf. Eine zentrale Verbindungsklasse sind die Terpene. Mehr als 8000 Terpene und über 30.000 der verwandten Terpenoide sind bisher bekannt. Sie sind die Schlüsselsubstanzen für viele biologische und pharmazeutische Funktionen.
Eukalyptol, oder 1.8-Cineol, ist in vielen Medikamenten gegen Husten enthalten. Es wirkt schleimlösend und bakterizid. Chemisch gesehen ist es eine Ringverbindung aus sechs Kohlenstoffatomen, die zusätzlich noch überbrückt ist. Aus dem Grundbaustein Geraniol entsteht diese Doppelringverbindung durch eine sogenannte Schwanz-Kopf-Zyklisierung.
Größtes Problem bei einer künstlichen Herstellung ist, dass beim Aufbau ein sehr energiereicher Zwischenzustand durchlaufen werden muss, bei dem das Molekül eine positive Ladung trägt. Ohne Katalysator kann das Molekül aus diesem Zustand heraus in verschiedenste Richtungen weiter reagieren. Das gewünschte Produkt wäre eines von vielen und die Ausbeute gering.
„Unser Katalysator stabilisiert den Übergangszustand und lenkt die Reaktion in die richtige Richtung“, sagt Konrad Tiefenbacher, Professor für Organische Chemie an der TU München. „In Lösung waren solche Reaktionen bisher nicht durchführbar“.
Selbstorganisation baut Katalysator auf
Auch der Katalysator der Reaktion ist etwas Besonderes: Jeweils vier Resorzin-Moleküle sind zu einem großen Ring mit 16 Kohlenstoffatomen verknüpft. Sechs dieser Moleküle setzen sich in Lösung von selbst zu einem großen, Oktaeder-artigen Käfig zusammen. Im seinem Inneren läuft die Zyklisierungsreaktion ab.
Vor allem die elektronenreichen aromatischen Ringsysteme der Resorzin-Bausteine scheinen die positive Ladung des Zwischenzustands zu stabilisieren. Ähnlich wie das Zyklisierungsenzym des Eukalyptusbaums verhindert der Katalysator so unerwünschte Nebenreaktionen.
Mit anderen Ausgangsverbindungen als dem Geraniol könnten so auch eine Vielzahl weiterer Verbindungen hergestellt werden. „Das Eukalyptol ist nur ein erster Schritt“, sagt Konrad Tiefenbacher. „Unser Fernziel ist die Herstellung noch komplexerer Verbindungen, wie beispielsweise das im Kampf gegen Krebs eingesetzte Taxol“.
Publikation:
Terpene cyclization catalysed inside a self-assembled cavity
Q. Zhang and K. Tiefenbacher
Nature Chemistry, Advanced Online Publication, 16. Februar 2015 – DOI: 10.1038/nchem.2181
Kontakt:
Prof. Dr. Konrad Tiefenbacher
Technische Universität München
Lichtenbergstr. 4, 85747 Garching, Germany
Tel.: +49 89 289 13332 – eMail: konrad.tiefenbacher@tum.de
http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2181.html Originalpublikation
http://www.oc8.ch.tum.de Website der Forschungsgruppe
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…
ASXL1-Mutation: Der verborgene Auslöser hinter Blutkrebs und Entzündungen
Wissenschaftler zeigen, wie ein mutiertes Gen rote und weiße Blutkörperchen schädigt. LA JOLLA, CA – Wissenschaftler am La Jolla Institute for Immunology (LJI) haben herausgefunden, wie ein mutiertes Gen eine…