Wärmeflüsse sorgen für Ordnung in der prebiotischen Molekularküche

Schematische Visualisierung von Wärmeflüssen in Gesteinsrissen.
© Christof Mast

LMU-Biophysiker zeigen, wie Wärmeflüsse durch Gesteinsrisse die Voraussetzung für die Entstehung des Lebens erzeugt haben könnten.

Das Leben ist kompliziert. Was im Alltag gilt, trifft auch auf die vielen komplexen Prozesse zu, die in Zellen stattfinden. Ständig müssen Proteine synthetisiert, Zellwände gebaut und Erbgut vervielfältigt werden. Klappen kann das nur, wenn zueinander gehörende Reaktionspartner zum passenden Zeitpunkt in ausreichend hoher Konzentration zusammenkommen und dabei möglichst nicht durch andere Stoffe gestört werden. Im Verlauf der Jahrmilliarden hat die Evolution diese Mechanismen perfektioniert und dafür gesorgt, dass solche lebenswichtigen Vorgänge mit hoher Effizienz am richtigen Ort stattfinden.

Weit weniger geordnet ging es wahrscheinlich vor vier Milliarden Jahren zu, als durch prebiotische Reaktionen die Voraussetzung für die Entstehung der ersten Lebensformen geschaffen wurde. Auch für diese Reaktionen war es notwendig, dass die „richtigen“ Stoffe zum „richtigen“ Zeitpunkt an einem Ort zusammengebracht wurden, damit sich komplexere Biomoleküle wie RNA oder Aminosäureketten überhaupt bilden konnten. Während solche Reaktionen im Labor dank manueller Zwischenschritte möglich sind, ist dies in einer einfachen „Ursuppe“, also einer stark verdünnten Mischung prebiotischer Bausteine, sehr schwierig. Wie aber konnte die Natur geeignete Bedingungen für die Entstehung von Leben schaffen?

LMU-Forschende um die Biophysiker Dr. Christof Mast und Professor Dieter Braun, Koordinator im Exzellenzcluster ORIGINS, sowie die Geowissenschaftlerin Professorin Bettina Scheu haben eine mögliche Antwort auf diese Frage gefunden und ihre Ergebnisse kürzlich im Fachmagazin Nature veröffentlicht. „Unsere Untersuchungen zeigen, wie einfache Wärmeflüsse für Ordnung im chemischen Chaos der Urzeit gesorgt und so die ersten prebiotischen Reaktionen angetrieben haben könnten“, erklärt Mast. Wärme entsteht bei einer Vielzahl geologischer und chemischer Prozesse, weswegen Wärmeflüsse damals vermutlich fast überall stattfanden. Fließt diese Wärme durch dünne, wassergefüllte Ritzen, wie sie beispielsweise durch das schnelle Abkühlen heißen Gesteins entstehen, führt dies zum Strömungstransport des Wassers (Konvektion) sowie zu einer Bewegung der darin gelösten Moleküle (Thermophorese) entlang des Wärmeflusses. Kombiniert sorgen beide Effekte dafür, dass sich gelöste Stoffe an bestimmten Stellen ansammeln und selektiv aufkonzentrieren.

Man nehme: Zutaten für Küche des Lebens

Die Gruppe um Mast konnte nun für über 60 verschiedene prebiotische Bausteine, wie Nukleobasen und Aminosäuren, experimentell zeigen, dass sich diese teilweise stark in ihrer Thermophorese unterscheiden und daher unterschiedlich in den Gesteinsritzen anreichern. „In einem System von miteinander verbundenen Brüchen und Rissen im Gestein verstärkt sich dieser Effekt noch und erzeugt in jedem Riss Lösungen mit anderen Zusammensetzungen prebiotischer Stoffe“, erklärt Thomas Matreux, Erstautor der Publikation. „Obwohl die Mischung anfänglich gleichmäßig verdünnt und daher unreaktiv war, können simple Wärmeflüsse so eine erstaunliche Vielfalt an möglichen Startbedingungen für die prebiotische Chemie schaffen“, fügt Paula Aikkila, ebenfalls Erstautorin, hinzu.

Ganz ohne die Hilfe moderner Labortechnik oder die hochentwickelten Reaktionsmechanismen des heutigen Lebens könnte die Natur auf diese Weise in großen vernetzten Systemen eine molekulare Küche erzeugt haben, in welcher alle Zutaten des Lebens wohlsortiert zur Anwendung bereitstanden. Als Teil des Sonderforschungsbereichs „Molecular Evolution in Prebiotic Environments“ (SFB 392) wollen die Forschenden nun untersuchen, wie viele „Gerichte“ des Lebens in diesem System zubereitet werden können.

Wissenschaftliche Ansprechpartner:

Dr. Christof Mast
Department of Physics
Ludwig-Maximilians-Universität München
christof.mast@physik.uni-muenchen.de
Tel.: +49 (0)89 2180-1484

Originalpublikation:

Thomas Matreux, Paula Aikkila, Bettina Scheu, Dieter Braun & Christof B. Mast: Heat flows enrich prebiotic building blocks and enhance their reactivity. Nature 2024
https://doi.org/10.1038/s41586-024-07193-7

https://www.lmu.de/de/newsroom/newsuebersicht/news/waermefluesse-sorgen-fuer-ordnung-in-der-prebiotischen-molekularkueche.html

Media Contact

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…