Wasserlöslich, hochaktiv und wiederverwertbar – Photokatalysator aus polymerem Kohlenstoffnitrid entwickelt

Sie haben Kohlenstoffnitrid wasserlöslich gemacht: (v.l.) Dr. Igor Krivtsov, Dr. Dariusz Mitoraj, Christiane Adler und Prof. Radim Beránek Foto: Elvira Eberhardt / Uni Ulm

Katalysatoren sind Stoffe, die in chemischen Reaktionen die Reaktionsgeschwindigkeit erhöhen, indem sie die Aktivierungsenergie senken. Sogenannte Photokatalysatoren nutzen die Energie aus Sonnen- oder LED-Licht, um chemische Reaktionsprozesse zu aktivieren. Dadurch wird es möglich, chemische Prozesse sogar bei Raumtemperatur und normalem Druck ablaufen zu lassen. Einem Ulmer Forschungsteam ist es nun gelungen, einen photokatalytisch aktiven Stoff zu entwickeln, der mit herkömmlichen, umweltfreundlichen und wiederverwendbaren Substanzen auskommt. Der Katalysator besteht aus polymerem Kohlenstoffnitrid, das in einem sogenannten Bottom-Up-Verfahren synthetisiert wurde. Das Besondere: die Substanz ist wasserlöslich und damit viel effektiver als konventionell hergestellte Kohlenstoffnitrid-Katalysatoren.

Schätzungsweise 80 Prozent aller chemischen Erzeugnisse werden mit Hilfe katalytischer Prozesse hergestellt. Der Vorteil: der Aufwand an Energie und Ressourcen lässt sich dadurch massiv verringern. „Die Entwicklung von umweltverträglichen, preisgünstigen und hochaktiven Katalysatoren ist daher von enormer wirtschaftlicher Bedeutung“, erklärt Professor Radim Beránek, Gruppenleiter im Institut für Elektrochemie an der Universität Ulm. Der Chemiker ist Leiter der Katalysator-Studie, deren Ergebnisse jüngst in der renommierten Fachzeitschrift „Angewandte Chemie“ veröffentlicht wurden. Zu den vielversprechendsten Substanzen für die Entwicklung von Photokatalysatoren gehören polymere Kohlenstoffnitride. Doch aufgrund der geringen spezifischen Reaktionsoberfläche und der wenigen katalytisch aktiven Zentren war der Wirkungsgrad hier nicht besonders hoch. Um die katalytische Leistung dieser Substanzen zu verbessern, wurde in den letzten Jahren mit verschiedenen sogenannten Top-Down-Methoden versucht, die Größe der Partikel – zum Beispiel durch Behandlung mit aggressiven Lösungsmitteln oder Ultraschall – zu verkleinern; bislang mit mäßigem Erfolg.

Das Forscherteam um Professor Beránek hat nun einen anderen Weg eingeschlagen. In Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftlern der Universitäten Jena, Oviedo (Spanien) und Aveiro (Portugal) konnte so ein völlig neues Verfahren entwickelt werden, um die Kohlenstoffnitrid-Katalysatoren zu synthetisieren; und zwar in einem sogenannten Bottom-Up-Prozess, bei dem etwas „von klein auf“ direkt aus molekularen Ausgangsstoffen (Präkusoren) hergestellt wird. Dafür wurden Vorläuferverbindungen einer Hitzebehandlung in einer Schmelze aus Alkalihydroxiden unterzogen. So entstanden winzige kolloidale Nanopartikel aus polymerem Kohlenstoffnitrid, die voll wasserlöslich sind und damit den katalytischen Prozessen eine maximale Reaktionsoberfläche bieten. Die katalytisch aktiven Nanopartikel bleiben in der wässrigen Lösung auch nach Monaten stabil und unverändert. „Das heißt, der Katalysator kann unter homogenen Bedingungen eingesetzt werden, was die photokatalytische Aktivität in allen bislang untersuchten Reaktionen enorm steigerte“, sagt Dr. Igor Krivtsov. Der Humboldt-Stipendiat in der Forschungsgruppe Beránek ist Erstautor der Studie.

Von Vorteil ist auch die einfache Wiedergewinnung: wird Salz hinzugefügt, fällt die katalytisch aktive Substanz aus und kann sehr leicht für die Wiederverwendung zurückgewonnen werden – und das ohne Verlust an Substanz, Aktivität oder Selektivität. Getestet wurde der neuartige Kohlenstoffnitrid-Katalysator bei der photokatalytischen Produktion von Wasserstoffperoxid durch Reduktion von Sauerstoff, die mit selektiver Oxidation von Stoffen aus Biomasse gekoppelt ist. „Das heißt, wir konnten aus zwei herkömmlichen und preisgünstigen Rohstoffen gleichzeitig zwei hochwertige chemische Produkte herstellen“, erläutern die Chemiker.

„Mit der Bottom-Up-Synthese von wasserlöslichen Kohlenstoffnitriden ist es uns gelungen, ein neues Paradigma für die lichtgetriebene Katalyse auf Kohlenstoffnitrid-Basis zu etablieren. Dies könnte uns in Zukunft vielfältige neue Anwendungsgebiete eröffnen“, ist sich das Forschungsteam einig. Gefördert wurde das Projekt von der Deutschen Forschungsgemeinschaft (DFG), vor allem im Rahmen des Transregio Sonderforschungsbereichs SFB/TRR 234 „CataLight – Light-driven Molecular Catalysts in Hierarchically Structured Materials – Synthesis and Mechanistic Studies“.

Prof. Dr. Radim Beránek, Tel.: 0731 / 50 25402, E-Mail: radim.beranek@uni-ulm.de

I. Krivtsov, D. Mitoraj, C. Adler, M. Ilkaeva, M. Sardo, L. Mafra, C. Neumann, A. Turchanin, C. Li, B. Dietzek, R. Leiter, J. Biskupek, U. Kaiser, C. Im, B. Kirchhoff, T. Jacob & R. Beranek „Water-Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasi-Homogeneous Photocatalysis“ Angewandte Chemie Int. Ed. 2019,
DOI: 10.1002/anie.201913331.

https://doi.org/10.1002/anie.201913331

Media Contact

Andrea Weber-Tuckermann idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hochleistungsfähiger Ceriumoxid-Thermoschalter für effiziente Wärmeregelung und nachhaltige Energiesysteme.

Langlebig, Effizient, Nachhaltig: Der Aufstieg von Ceriumoxid-Thermoschaltern

Bahnbrechende Thermoschalter auf Basis von Ceriumoxid erreichen bemerkenswerte Leistungen und revolutionieren die Steuerung des Wärmeflusses mit nachhaltiger und effizienter Technologie. Ceriumoxid-Thermoschalter revolutionieren die Steuerung des Wärmeflusses Thermoschalter, die den Wärmeübergang…

Industrielle Roboter senken CO₂-Emissionen in der Fertigung für nachhaltigen Welthandel.

Wie industrielle Roboter Emissionen in der globalen Fertigung reduzieren

Eine neue Studie untersucht die Schnittstelle zwischen industrieller Automatisierung und ökologischer Nachhaltigkeit, wobei der Schwerpunkt auf der Rolle industrieller Roboter bei der Reduzierung der Kohlenstoffintensität von Exporten aus der Fertigung…

3D-gedruckte Biokeramische Transplantate für personalisierte kraniomaxillofaziale Knochenrekonstruktion.

Patienten können durch präzise, personalisierte Biokeramische Transplantate heilen

Eine kürzlich veröffentlichte Übersichtsarbeit revolutioniert die Landschaft der craniomaxillofazialen Knochenregeneration durch die Einführung personalisierter biokeramischer Transplantate. Diese bahnbrechende Forschung untersucht die Herstellung und das klinische Potenzial synthetischer Transplantate, die mittels…