Wenn Spinnengift die Nerven angreift
Forschungsgruppe untersucht Neurotoxin der Schwarzen Witwe…
Im wahrsten Sinne des Wortes die Nerven verlieren – bei Spinnen geraten viele Menschen in Angst und Schrecken, doch nur wenige sind gefährlich. Die Schwarze Witwe hat es allerdings in sich: Sie schnappt sich ihre Beute mit Nervengift; genauer gesagt mit Latrotoxinen (LaTXs). Prof. Dr. Christos Gatsogiannis vom Institut für Medizinische Physik und Biophysik der Universität Münster hat sich der Substanz angenommen, auch im Hinblick auf medizinische Anwendungen. Mit Hilfe der sogenannten Kryo-Elektronenmikroskopie ist es dem Team um Gatsogiannis gelungen, die erste Struktur eines LaTX aufzuklären. Die Ergebnisse sind im Fachmagazin Nature Communications erschienen.
Phobien sind häufig irrationaler Natur – insbesondere bei Spinnen, denn die haben mehr Angst vor Menschen als umgekehrt. Allerdings: Einige Exemplare haben es in sich. Beispielsweise die Latrodectus-Spinne, besser bekannt als Schwarze Witwe. Sie schnappt sich ihre Beute mit Gift – genauer gesagt: mit Latrotoxinen (LaTXs), einer Untergruppe der Neurotoxine, also Nervengiften. Ein Biss der Schwarzen Witwe kann auch für Menschen tödlich enden.
Wie das Nervengift genau aufgebaut ist, war bislang unklar. Prof. Dr. Christos Gatsogiannis vom Institut für Medizinische Physik und Biophysik der Westfälischen Wilhelms- Universität (WWU) Münster hat sich der Substanz angenommen – nicht nur wegen deren Einzigartigkeit, sondern auch im Hinblick auf mögliche medizinische Anwendungen. Mittels der sogenannten kryo-Elektronenmikroskopie, kurz: kryo-EM, ist es der Gruppe um Gatsogiannis in Zusammenarbeit mit seinen ehemaligen Kolleginnen und Kollegen am Max-Planck-Institut in Dortmund sowie Forschern der Jacobs Universität Bremen gelungen, die erste Struktur eines Latrotoxins aufzuklären. Die Erkenntnisse der Forschungsgruppe sind jetzt in der Fachzeitschrift Nature Communications erschienen.
Neurotoxine dürften den meisten Menschen bekannt sein – in Form von Botox, das häufig bei Schönheitsbehandlungen zum Einsatz kommt. Das Gift der Schwarzen Witwe wirkt jedoch alles andere als „verschönernd“. LaTX wurde von der Natur hauptsächlich entwickelt, um Insekten bewegungsunfähig zu machen oder zu töten. Dabei docken die Toxine an spezifischen Rezeptoren auf der Oberfläche von Nervenzellen an und bewirken die Freisetzung von Neurotransmittern, zum Beispiel durch einen Calcium-Kanal. Durch den ständigen Einstrom von Calcium-Ionen in die Zelle werden Transmitter abgegeben; die Folge sind Krämpfe.
Dieser Mechanismus unterscheidet die Latrotoxine von allen anderen Varianten der sogenannten porenformenden Toxine. „Trotz umfangreicher Studien in den letzten Jahrzehnten wussten wir nicht, wie diese Toxine aufgebaut sind. Daher waren wir bisher auch nicht in der Lage, den genauen Wirkmechanismus zu verstehen“, sagt Gatsogiannis. Die kryo-EM konnte Abhilfe leisten: Mithilfe dieser dreidimensionalen Methode lassen sich Biomoleküle mittlerweile bis zur atomaren Auflösung „fotografieren“. Dabei werden die Proteinkomplexe in flüssigem Ethan bei minus 196 Grad in Millisekunden in eine dünne Schicht von amorphem Eis, einer Form von festem Wasser, eingefroren. Anschließend werden Hunderttausende von Bildern aufgenommen, welche unterschiedliche Ansichten des Proteins zeigen – und derart die Struktur des Nervengifts erkennen lassen.
Mittels der kryo-EM ist es der Gruppe um Christos Gatsogiannis in Zusammenarbeit mit Forscherinnen und Forschern des Max-Planck-Instituts in Dortmund und der Jacobs Universität Bremen gelungen, die erste Struktur eines Latrotoxins aufzuklären. „Die allgemeine Struktur des LaTX ist einzigartig und unterscheidet sich von allen bereits bekannten Toxinen in jeglicher Hinsicht“, betont Gatsogiannis. Die neuen Erkenntnisse sind grundlegend für das Verständnis des molekularen Mechanismus der LaTX-Familie und bereiten den Boden für mögliche medizinische Anwendungen – und auch für die Entwicklung eines effizienten Gegengifts. Außerdem könnten die Erkenntnisse über die insektenspezifischen Toxine neue Möglichkeiten zur Schädlingsbekämpfung eröffnen.
Für künftige Forschungen ist es jedoch essenziell, zu verstehen, wie das Toxin genau in der Membran inseriert – sprich: wie sich das Gift in die Zelloberfläche einfügt. „Momentan untersuchen wir die Struktur aller Mitglieder der Familie der Latrotoxine, vor allem, wie sie spezifische Rezeptoren an der Zelloberfläche sehr genau erkennen und wie diese Sensoren funktionieren“, erklärt Gatsogiannis.
Seine größte Hürde bei diesen Plänen: Die kryo-EM ist im Großraum Münster noch nicht verfügbar. Das wollen Christos Gatsogiannis und sein Team ändern: „Die praktische Bedeutung für die medizinische Forschung ist immens, da ‚Funktion‘ in biologischen Zusammenhängen unmittelbar mit ‚Struktur‘ verknüpft ist. Die Methode ist aber sehr komplex und benötigt eine hoch moderne Infrastruktur“, betont Dr. Minghao Chen, Erstautor der Studie. Die Arbeitsgruppe will die innovative Methode bald im neuen Forschungsbau der Universität Münster, dem Center for Soft Nanoscience (SoN), einführen.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Christos Gatsogiannis
Center for Soft Nanoscience und Institut für Medizinische Physik und Biophysik
Westfälische Wilhelms-Universität (WWU) Münster
Telefon: (+49) 251 83 34411
E-Mail: Christos.gatsogiannis@uni-muenster.de
Originalpublikation:
Chen, M., Blum, D., Engelhard, L. et al. Molecular architecture of black widow spider neurotoxins. Nat Commun 12, 6956 (2021). https://doi.org/10.1038/s41467-021-26562-8
Weitere Informationen:
https://www.nature.com/articles/s41467-021-26562-8 Link zur Studie
https://www.uni-muenster.de/SON/research/gatsogiannis.html AG Gatsogiannis / Institut für Medizinische Physik und Biophysik
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…