Wie Fische zu ihren Stacheln kamen

Two males of the cichlid fish Astatotilapia burtoni, the model organism used to study spine and soft-ray development in Hoech et al.
Credit: Joost Woltering

Konstanzer Forschende entschlüsseln die genetischen Mechanismen der Bildung von Flossenstacheln bei verschiedenen Fischgruppen.

Viele Fischarten haben im Zuge der Evolution Teile ihrer Flossen zu scharfen, nadelförmigen Elementen – sogenannte Flossenstacheln – weiterentwickelt, die dem Schutz der Fische vor Fressfeinden dienen. Derartige Stacheln haben sich unabhängig voneinander in verschiedenen Abstammungslinien entwickelt und werden als eine evolutionäre Triebkraft der Fischvielfalt angesehen. In einer in PNAS veröffentlichten Studie zeigt ein Forscherteam der Universität Konstanz, wie Flossenstacheln aus weichen Flossenstrahlen entstehen und wie sie sich unabhängig voneinander in verschiedenen Fischgruppen entwickeln konnten.

In dem Film „Ein Fisch namens Wanda“ verschlingt Otto, der Schurke des Films, mühelos die Bewohner von Kens Aquarium. Die Realität ist jedoch weitaus ernüchternder, wie ein Fall zeigte: Mindestens ein bedauernswerter Fan des Films hatte die Szene real nachgespielt und musste anschließend in ärztliche Behandlung, weil ihm ein Fisch buchstäblich im Halse steckengeblieben war. Er lernte so eine schmerzhafte Lektion in Ichthyologie (Fischkunde): Einige Fische besitzen spitze Flossenstacheln zu ihrer Verteidigung.

Zwei Typen von Flossenelementen

Tatsächlich findet man bei vielen Fischarten zwei Typen von Flossenelementen: „normale“ weiche Flossenstrahlen, die stumpf und flexibel sind und in erster Linie der Fortbewegung dienen, sowie die genannten Flossenstacheln. Letztere sind spitz und stark verknöchert und dienen hauptsächlich dem Zweck, den Fisch weniger gut essbar zu machen. Flossenstacheln bieten daher einen hohen evolutionären Vorteil. Die mit über 18.000 Vertretern artenreichste Untergruppe der Knochenfische, die sogenannten Acanthomorpha, entwickelten sogar separate „Stachelflossen“, die ausschließlich aus Stacheln bestehen. Daher wird die Entwicklung von Flossenstacheln als wichtiger Faktor des evolutionären Erfolgs und der Vielfalt von Fischen angesehen.

In der in PNAS veröffentlichten Studie zeigt ein Forscherteam der Universität Konstanz unter Leitung von Dr. Joost Woltering, der zusammen mit der Doktorandin und Erstautorin der Studie Rebekka Höch im Labor von Prof. Dr. Axel Meyer arbeitet, wie Flossenstacheln während der Embryonalentwicklung entstehen. Sie klären außerdem auf, wie sich die Stacheln in verschiedenen Abstammungslinien unabhängig voneinander aus ursprünglichen, weichen Flossenstrahlen entwickeln konnten. Die Studie konzentriert sich dabei auf eine Modellart für die Gruppe der Acanthomorpha, den Buntbarsch Astatotilapia burtoni (Burtons Maulbrüter), der gut entwickelte weichstrahlige und stachelige Flossenteile besitzt.

Unterschiedliche Entwicklungsgene für Stacheln und weiche Flossenstrahlen

In einem ersten Schritt bestimmten die Forschenden zunächst die genetischen Profile von Flossen mit weichen Flossenstrahlen und solchen mit Stacheln während der Embryonalentwicklung. „Durch diese Experimente wurde deutlich, dass eine Reihe von Genen, die wir bereits aus der Flossen- und Gliedmaßenentwicklung kannten, in Stacheln und den weichen Flossenstrahlen unterschiedlich aktiviert werden“, berichtet Rebekka Höch. Diese Gene entsprechen sogenannten Master-Regulator-Genen und sind dafür bekannt, die Form und Struktur des Skeletts entlang der Längsachse des Körpers und in den Gliedmaßen zu bestimmen. Bei den Fischflossen scheinen sie einen genetischen Code zur Verfügung zu stellen, der festlegt, ob sich die entstehenden Flossenelemente wie ein Stachel oder wie ein weicher Flossenstrahl entwickeln werden.

Weiche Flossenstrahlen können sich in Stacheln umwandeln und umgekehrt

Als Nächstes identifizierten die Forschenden genetische Regulationswege, die diese Master-Regulator-Gene einschalten und deren Aktivität an verschiedenen Positionen in den Flossen bestimmen. „Mithilfe chemischer Werkzeuge, sogenannter Inhibitoren und Aktivatoren, sowie der ‚Genschere‘ CRSIPR/Cas9 konnten wir die Rolle dieser Regulationswege untersuchen und experimentell testen, wie stachelige und weichstrahlige Flossenbereiche während der Entwicklung entstehen“, sagt Joost Woltering, Assistenzprofessor im Fachbereich Biologie der Universität Konstanz und Letztautor der Studie.

Durch ihre Experimente konnten die Forschenden die Anzahl der Stacheln sowie weichen Flossenstrahlen in den Flossen verändern. Dieser Effekt war am stärksten, wenn experimentell in den sogenannten BMP („bone morphogenetic protein“) Signalweg eingegriffen wurde. „Wir beobachteten nicht nur Veränderungen in der Aktivierung der Master-Regulator-Gene, sondern auch sogenannte homöotischen Transformationen, bei denen einige weiche Flossenstrahlen zu Stacheln wurden oder umgekehrt Stacheln zu weichen Flossenstrahlen“, erklärt Joost Woltering.

Eine weitere Beobachtung war, dass sich zusätzlich zu den Flossenelementen auch die dazugehörige Flossenfärbung änderte. „Männliche Buntbarsche haben leuchtend gelbe Flecken auf ihren Flossen, aber diese sind nur auf den weichstrahligen Abschnitten vorhanden. Wir konnten beobachten, dass die Flossen dort, wo sich ein weicher Flossenstrahl in einen Stachel umgewandelt hatte, auch die gelben Flecken verloren hatten“, sagt Joost Woltering. Diese Beobachtung zeigt, dass die Stacheln und weichen Flossenstrahlen bei den Acanthomorpha integrierte Teile eines größeren Entwicklungsmoduls sind, das eine ganze Reihe von sichtbaren Merkmalen der Flossen bestimmt.

Dasselbe Prinzip bei verschiedenen Fischgruppen

Beim Zusammensetzen des Puzzles erkannten die Forschenden, dass bei der Evolution der Stachelflossen ein hoch „konserviertes“ (sprich im Laufe der Evolution weitgehend unverändertes) System zur Musterbildung „zweckentfremdet“ wurde. „Tatsächlich ist der genetische Code, der den Flossenbereich bestimmt, in dem Stacheln entstehen werden, auch in Flossen aktiv, die keine Stacheln haben. Dies deutet auf ein ursprüngliches genetisches Muster hin, das für die Bildung von Stacheln umfunktioniert wurde“, erklärt Rebekka Höch.

Mit dieser neugewonnenen Erkenntnis im Hinterkopf machten sich die Autoren daran, die Flossenmusterung bei Welsen zu untersuchen, einer anderen Gruppe von Fischen, deren Mitglieder im Laufe der Evolution ebenfalls Stacheln in den Flossen entwickelt haben – und zwar unabhängig von den Acanthomorpha. Tatsächlich stimmte der beim Buntbarsch identifizierte genetische Code für die Stacheln mit dem der Welsstacheln überein. Obwohl es einige Unterschiede zwischen den verschiedenen „stacheligen Fischarten“ gibt, deutet dies insgesamt auf die Existenz eines hoch konservierten Musters hin, das zur Bildung von Stacheln herangezogen wird, sofern dies durch evolutionäre Selektion begünstigt wird.

Die nächsten Schritte

In zukünftigen Forschungsprojekten wird sich das Team nun auf diejenigen Gene konzentrieren, die den identifizierten Stachel- und Flossenstrahl-Kontrollgenen nachgeschaltet sind. Ziel ist es, zu ergründen, wie genau diese die Flossenmorphologie verändern, indem sie Verknöcherung und zelluläre Wachstumswege regulieren. „Letztendlich wollen wir ein besseres Verständnis davon gewinnen, wie neue anatomische Strukturen entstehen, die bestimmte Arten erfolgreicher als andere machen, und natürlich, wie dies zu der unglaublichen evolutionären Vielfalt der Fische beigetragen hat“, schließt Joost Woltering.

Faktenübersicht:
• Originalpublikation: Rebekka Höch, Ralf F. Schneider, Alison Kickuth, Axel Meyer & Joost M. Woltering (2021) Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP-gremlin-shh signaling network. PNAS; DOI: 10.1073/pnas.2101783118
• Die Originalpublikation wird im Laufe der 27. Kalenderwoche (05.07. – 11.07.) mit oben genanntem DOI in PNAS erscheinen.
• Alle Autorinnen und Autoren der Studie sind oder waren mit dem Fachbereich Biologie der Universität Konstanz assoziiert. Ralf F. Schneider arbeitet derzeit am Helmholtz-Zentrum für Ozeanforschung Kiel (Geomar), Alison Kickuth am Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG).
• Wissenschaftliche Kontaktpersonen: Dr. Joost Woltering (joost.woltering@uni-konstanz.de), Prof. Dr. Axel Meyer (axel.meyer@uni-konstanz.de)
• Der BMP („bone morphogenetic protein“)- und der shh („sonic hedgehog“)-Signalweg sind während der Entwicklung maßgeblich an der Entstehung des Flossenmusters von Fischen beteiligt. Die durch sie gesteuerte Aktivität von Master-Regulator-Genen (hoxa13 und alx4) entscheidet, ob sich die entstehenden Flossenelemente zu einem weichen beziehungsweise stacheligen Flossenstrahl entwickeln werden.
• Ein genetischer Vergleich zwischen Fischen mit Stacheln aus verschiedenen Abstammungslinien legt nahe, dass Flossenstacheln durch wiederholte „Zweckentfremdung“ eines hoch konservierten genetischen Musters mehrfach unabhängig voneinander entstanden sind.
• Förderung: Deutsche Forschungsgemeinschaft (DFG, insbesondere WO-2165/2-1), Europäischer Forschungsrat (ERC; #293700) und Young Scholar Fund der Universität Konstanz.

Hinweis an die Redaktionen:
Ein Foto kann im Folgenden heruntergeladen werden:
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2021/how_fish.jpg
Bildunterschrift: Zwei Männchen der Buntbarsch-Art Burtons Maulbrüter (Astatotilapia burtoni). Fische dieser Art wurden in Höch et al. als Modellorganismus zur Untersuchung der Entwicklung von stacheligen und weichstrahligen Flossenelementen verwendet.
Bilder: Joost Woltering

Wissenschaftliche Ansprechpartner:

Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Originalpublikation:

Rebekka Höch, Ralf F. Schneider, Alison Kickuth, Axel Meyer & Joost M. Woltering (2021) Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP-gremlin-shh signaling network. PNAS; DOI: 10.1073/pnas.2101783118
Die Originalpublikation wird im Laufe der 27. Kalenderwoche (05.07. – 11.07.) mit oben genanntem DOI in PNAS erscheinen.

http://www.uni-konstanz.de

Media Contact

Helena Dietz Stabsstelle Kommunikation und Marketing

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…