Wie Pflanzen für gleiche Samenabstände sorgen

Seeds in different bean and pea pods (top: snow pea pod; mid: princess beans; bottom: runner beans). The research team has clarified why the spacing between the seeds is so similar in each pod and how the spacing relates to fruit size. (Photo: HHU / Nozomi Kawamoto)
Credit: HHU / Nozomi Kawamoto

Pflanzenforschung: Veröffentlichung in Current Biology

Ein internationales Forschungsteam unter Leitung von Biologinnen und Biologen der Heinrich-Heine-Universität Düsseldorf (HHU) hat untersucht, wie die Bildung von Samen mit dem Wachstum der Frucht koordiniert wird. Die zugrundeliegenden genetischen Steuerungsmechanismen erläutern sie in der aktuellen Ausgabe der Fachzeitschrift Current Biology.

Öffnet man eine Erbsenschote, so findet man darin alle Erbsen in gleicher Größe und in regelmäßigem Abstand zueinander. Nicht anders in Prinzess-, Stangen- und Soja- und diversen anderen Bohne und Erbsen, aber auch bei Nicht-Hülsenfrüchten. Dies überrascht, weil sich sowohl die Größe und Zahl der Samen, als auch die Größen der Schoten zwischen den Arten deutlich unterscheiden.

Ein Forschungsteam aus Deutschland, Australien, Japan, den USA und Italien unter der Leitung von Prof. Dr. Rüdiger Simon vom Institut für Entwicklungsgenetik der HHU ist den genetischen Mechanismen dahinter auf den Grund gegangen. Das Team hat dazu bei verschiedenen Wildlinien der Ackerschmalwand die genetischen Abläufe hinter der Ausbildung der Ovulen – der Samenanlagen, aus denen nach der Befruchtung die Samen entstehen – und dem Wachstum der Schote untersucht.

Die Wildlinien stammen von verschiedenen Standorten. Die Ackerschmalwand oder Arabidopsis thaliana ist eine Modellpflanze der Biologie. Dazu Prof. Simon: „Die einzelnen Samen konkurrieren untereinander um Nährstoffe. Damit jeder Samen möglichst gleich versorgt wird und sich gut entwickeln kann, ist eine möglichst gleichmäßige Verteilung der Samen in regelmäßigen Abständen in der Schote wichtig.“

Schon bei den verschiedenen Wildtypen von Arabidopsis thaliana gibt es eine große Schwankungsbreite bei den Fruchtgrößen und Samenzahlen. Die Forscher fanden aber auch ein einheitliches genetisches Steuerprogramm, welches unabhängig von Umweltfaktoren wie der Temperatur die Samenposition in der Schote steuert.

Das Forschungsteam fand heraus, dass die Samenbildung an genau definierten Positionen durch mehrere Signalwege kontrolliert wird, die von kleinen Eiweißbausteinen, sogenannten sezernierten Peptiden der EPFL-Familie, aktiviert werden. Diese Peptide werden von Rezeptoren der ERECTA-Familie auf den Zelloberflächen erkannt.

Eines der Peptide, EPFL2, wird zwischen den sich entwickelnden Samenanlagen gebildet und justiert die Abstände der Samen zueinander. Wenn es fehlt, fanden die Forscherinnen und Forscher ungleichmäßige Abstände – wodurch benachbarte Samen stärker um Nährstoffe konkurrieren – bis hin zu Zwillingssamen, die sich zumeist nicht vollständig entwickeln.

EPFL2 und ein sehr nah verwandtes Peptid, EPFL9, steuern gleichzeitig auch die Fruchtentwicklung – damit ist die Bildung von Samen eng mit dem Wachstum der Schoten gekoppelt.

Der Erstautor der Studie, Dr. Nozomi Kawamoto, weist auf einen weiteren Aspekt hin: „Dieselben Botenstoffe und Rezeptoren, die wir als verantwortlich für das Verhältnis von Samengrößen und -abständen identifiziert haben, sind auch für die Abstände der Spaltöffnungen in den Blättern und die Feinstruktur von gezackten Blättern verantwortlich.“ Über die Spaltöffnungen oder auch Stomata reguliert die Pflanze den Gasaustausch mit der Umgebung. Dr. Kawamoto ist Postdoc in Prof. Simons Institut im Rahmen des Düsseldorfer Exzellenzclusters zur Pflanzenforschung CEPLAS.

Originalpublikation:

Nozomi Kawamoto, Dunia Pino Del Carpio, Alexander Hofmann, Yoko Mizuta, Daisuke Kurihara, Tetsuya Higashiyama, Naoyuki Uchida, Keiko U. Torii, Lucia Colombo, Georg Groth, and Rüdiger Simon: A peptide pair coordinates regular ovule initiation patterns with seed number and fruit size. Current Biology 10 September 2020
DOI: 10.1016/j.cub.2020.08.050

https://www.uni-duesseldorf.de/home/startseite/news-detailansicht-inkl-gb/article/wie-pflanzen-fuer-gleiche-samenabstaende-sorgen.html

Media Contact

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…