Wie SARS-CoV-2 die Proteinfabrik der Zelle kapert
Bislang wurde widersprüchlich diskutiert, wie Coronaviren es schaffen, Wirtszellen zu kapern und dabei die körpereigene Abwehr zu blockieren. Forschende um Marina Chekulaeva vom MDC haben nun den entscheidenden Mechanismus entschlüsselt. Ihre Ergebnisse stellen sie im Fachjournal „RNA“ vor.
Etwas mehr als zwei Jahre sind seit dem Ausbruch des Coronavirus SARS-CoV-2 vergangen. Um das Virus in Schach zu halten und seine pandemische Ausbreitung zu stoppen, stehen bislang hauptsächlich Impfstoffe zur Verfügung. Diese vermögen derzeit die Übertragung des Virus jedoch nicht vollständig zu stoppen. Zudem ist damit zu rechnen, dass künftige Virusvarianten derart verändert sind, dass sie den Impfschutz umgehen können. Daher ist es von großer Bedeutung, das Virus und die Mechanismen, mit denen es Zellen infiziert, eigene Eiweißmoleküle herstellt und schließlich neue Viruspartikel produziert, besser zu verstehen. So lassen sich mögliche Angriffspunkte für die gezielte Therapie einer Infektion mit SARS-CoV-2 finden.
Ein Forschungsteam um Dr. Marina Chekulaeva am Berliner Institut für Medizinische Systembiologie (BIMSB) des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) hat gemeinsam mit Kolleg*innen des Leibniz-Instituts für Analytische Wissenschaften in Dortmund herausgefunden, wie das Virus die Proteinfabrik der Zelle für sich einnimmt – um virale Proteine zu synthetisieren, gleichzeitig die Produktion von körpereigenen Eiweißstoffen zu blockieren und so die Immunantwort der Wirtszelle auszuhebeln. Im Fachjournal „RNA“ stellen die Wissenschaftler*innen ihre Ergebnisse vor.
NSP1 unterdrückt die Proteinproduktion in der Zelle
Schon länger hatten Forschende in diesem Zusammenhang ein virales Protein mit dem Kürzel NSP1 im Visier. Es ist das erste Virusprotein, das nach der Infektion der Wirtszelle entsteht. „NSP1 unterdrückt die Proteinproduktion der Zelle, ohne dabei die Synthese viraler Proteine zu beeinträchtigen“, sagt Marina Chekulaeva. „Darüber, wie das gelingt, gab es bislang sehr widersprüchliche Hypothesen. Wir haben beschlossen, diesen Mechanismus mit Lucija Buinic zu erforschen, der Erstautorin des Manuskripts. Sie hat während des Lockdowns in unserem Labor ihre Masterarbeit geschrieben.
Marina Chekulaeva ist es mit ihrem Team gelungen, diesen Prozess aufzudecken. Bekannt war bereits, dass sich das NSP1-Protein an die Ribosomen heftet, die der Zelle als Proteinfabriken dienen. Genauer gesagt, verankert es sich im Tunnel, durch das die messenger-RNA (mRNA) in das Ribosom eintritt, damit die Bauanleitung abgelesen und schließlich in Proteine übersetzt werden kann. Dadurch ist das Ribosom quasi blockiert: Zelluläre mRNAs gelangen nicht mehr in die Proteinfabrik, die Synthese wichtiger zellulärer Eiweißmoleküle der Zelle kann nicht stattfinden. Das betrifft letztlich auch die Immunantwort, die auf diese Weise unterdrückt wird.
Haarnadelstruktur dient als Passierschein
Allerdings benötigen auch virale mRNAs Zugang zu den Proteinfabriken, damit letztlich neue Viruspartikel entstehen können. Wie aber umgehen diese die Blockade, die das Virus verursacht hat? Marina Chekulaeva und ihr Team haben festgestellt, dass dabei bestimmte Nukleotide in einer speziellen Struktur der viralen mRNA, der sogenannten Haarnadel oder Stammschleife, eine Rolle spielen. Diese Haarnadel scheint als eine Art Passierschein zu dienen: Sie interagiert mit NSP1, das dadurch den Weg in das Ribosom freigibt. Das virale Protein kann synthetisiert werden.
„Wir haben damit drei mögliche Angriffspunkte für die antivirale Therapie entdeckt“, sagt Marina Chekulaeva. Eine Möglichkeit wäre, das NSP1-Protein selbst anzugreifen, sodass es nicht mit dem Ribosom interagieren kann. Alternativ könnte die Interaktion zwischen dem NSP1-Protein und der viralen mRNA unterbunden werden. Dazu könnte man etwa die Stelle blockieren, an der NSP1 mit der Haarnadelstruktur interagiert.
Es wäre auch denkbar, gezielt virale mRNA zu beseitigen. Chekulaeva und ihr Team haben dafür chemisch veränderte und dadurch stabilisierte Oligonukleotide hergestellt, die sich an die Haarnadelstruktur heften. So entsteht ein RNA-DNA-Hybrid, der von der Zelle beseitigt wird. Da diese Haarnadelstruktur spezifisch ist für virale mRNA, ist ein solcher Eingriff sehr spezifisch – die zelluläre mRNA und damit die Proteinsynthese der infizierten Zelle werden nicht beeinträchtigt. „Zudem handelt es sich um eine sehr wichtige Struktur, von der wir mit großer Wahrscheinlichkeit annehmen dürfen, dass sie kaum mutiert“, sagt Chekulaeva. „Eine Resistenzbildung wäre also eher unwahrscheinlich.“
Zumindest im Experiment in der Kulturschale sind alle drei Möglichkeiten denkbar. Welche davon sich letztlich für die Therapie eignet, werden künftige Untersuchungen zeigen müssen.
Max-Delbrück-Centrum für Molekulare Medizin (MDC)
Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft gehört zu den international führenden biomedizinischen Forschungszentren. Nobelpreisträger Max Delbrück, geboren in Berlin, war ein Begründer der Molekularbiologie. An den MDC-Standorten in Berlin-Buch und Mitte analysieren Forscher*innen aus rund 60 Ländern das System Mensch – die Grundlagen des Lebens von seinen kleinsten Bausteinen bis zu organübergreifenden Mechanismen. Wenn man versteht, was das dynamische Gleichgewicht in der Zelle, einem Organ oder im ganzen Körper steuert oder stört, kann man Krankheiten vorbeugen, sie früh diagnostizieren und mit passgenauen Therapien stoppen. Die Erkenntnisse der Grundlagenforschung sollen rasch Patient*innen zugutekommen. Das MDC fördert daher Ausgründungen und kooperiert in Netzwerken. Besonders eng sind die Partnerschaften mit der Charité – Universitätsmedizin Berlin im gemeinsamen Experimental and Clinical Research Center (ECRC) und dem Berlin Institute of Health (BIH) in der Charité sowie dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DZHK). Am MDC arbeiten 1600 Menschen. Finanziert wird das 1992 gegründete MDC zu 90 Prozent vom Bund und zu 10 Prozent vom Land Berlin.
Wissenschaftliche Ansprechpartner:
Dr. Marina Chekulaeva
AG Nicht-Kodierende RNAs und Mechanismen der Genregulation im Cytoplasma
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
marina.chekulaeva@mdc-berlin.de
Originalpublikation:
Lucija Bujanic et al (2022): “The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression“, in: RNA, DOI: 10.1261/rna.079086.121
Weitere Informationen:
https://www.mdc-berlin.de/de/chekulaeva – AG Chekulaeva
http://www.mdc-berlin.de – Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
https://www.mdc-berlin.de/de/news/press/wie-sars-cov-2-die-proteinfabrik-der-zelle-kapert
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…