Wie sich Blutgefäße im Gewebe unterhalten

Prof. Dr. Christian Helker und seine Arbeitsgruppe untersuchen im Fachbereich Biologie die Entwicklungsschritte des Gefäßwachstums
Foto: Christian Stein / Universität Marburg

Marburger Forschende entschlüsseln Kommunikation beim Gefäßwachstum.

Die Marburger Forschenden um Julian Malchow und Prof. Dr. Christian Helker vom Fachbereich Biologie der Philipps-Universität Marburg haben einen neuen Signalweg entdeckt, mit dessen Hilfe Nervenzellen im zentralen Nervensystem mit Blutgefäßen kommunizieren. Diese Kommunikation ist entscheidend für gesundes Gewebe- und Organwachstum. Die Ergebnisse sind auch außerhalb des zentralen Nervensystems interessant für Therapien – nach Herzinfarkten oder bei Krebserkrankungen –, bei denen aufzubauende oder zu eliminierende Gefäße entscheidend sind. Die Forschenden berichten über ihre Experimente im Fachmagazin „Science Advances“.

„Die Forschung zeigt, dass Zellen nicht isoliert voneinander zu betrachten sind, sondern in komplexen Netzwerken im Gewebe miteinander kommunizieren. In diesem Fall wird das Wachstum von Blutgefäßen entscheidend von der Kommunikation mit den Nervenzellen geprägt. Ergebnisse und Publikation unterstreichen die herausragende Forschungstätigkeit in unserem universitären Profilbereich ‚Geist, Gehirn und Verhalten‘“, erläutert Prof. Dr. Gert Bange, Vizepräsident für Forschung der Uni Marburg.

Wissenschaftler*innen haben die Vorstellung längst widerlegt, wonach Blutgefäße schlicht Röhren gleichen, die Sauerstoff und Nährstoffe transportieren. Vielmehr sind sie Teil eines umfangreichen Signalnetzwerks im Gewebe und zwischen Organen. In ihren Experimenten haben die Forschenden insbesondere untersucht, wie Nervenzellen den Signalstoff Apelin produzieren, der das Wachstum von Blutgefäßen steuert. Die Gefäße sprießen aus und wandern dann Richtung Nervenzelle. Damit das gelingt, verfügen die Gefäßzellen über bestimmte Rezeptoren auf ihrer Zellmembran. Diese für Apelin spezifischen Rezeptoren gehören in eine große Rezeptorenklasse namens G-Protein-gekoppelte Rezeptoren (GPCR), die zur erfolgreichsten Klasse medikamentöser Ziele im menschlichen Genom zählen und in der Medizinforschung gut bekannt sind.

Als Modellsystem betrachten die Forschenden Larven des Zebrafischs. „Die eignen sich gut für die Forschung an Organen und Zellen, da sich die Organe schnell entwickeln und viele Entwicklungsschritte dem Menschen ähnlich, wenn nicht gar identisch sind“, sagt Christian Helker. Unter dem Laserscanning-Mikroskop können die Forschenden das Wachstum von Gefäßen ins sogenannte Neuralrohr (das sich zum Zentralen Nervensystem entwickelt) en detail beobachten. „Wir sehen live, wie die Signale in den Zellen eingeschaltet werden und die Zelle auf das Signal reagiert“, sagt Helker. Dazu müssen die Forschenden bestimmte Bestandteile in den Zellen genetisch und farblich markieren. Sie sprechen von sogenannten Biosensoren, die dann rot, grün oder gelb aufleuchten, wann immer ein Signalweg in der Zelle angeschaltet wird. „Wir können am Monitor verfolgen, wie die Gefäße in das Neuralrohr einwandern und welche Signalwege dafür erforderlich sind“, sagt Helker.

Mit gentechnischen Methoden können die Biologen die Signalwege manipulieren. Ist beispielsweise ein Rezeptor defekt oder blockiert, so kommt das Wachstum ins Stocken. „Wenn ein Schritt fehlt, geht alles schief“, kommentiert Christian Helker. Für die therapeutische Anwendung bedeutet dies, dass sich über das Verständnis der Signalwege des Gefäß-Organ-Wachstums Erkrankungen womöglich beeinflussen lassen. Ist Gewebe etwa nach einem Herzinfarkt geschädigt, so könnte medikamentös der Neuaufbau unterstützt werden. Im sogenannten Tissue Engineering, bei dem Ersatzgewebe oder -organe im Labor gezüchtet werden, wäre das Einleiten und Steuern von Gefäßwachstum ein wichtiger Schritt nach vorn. Andererseits ist es bei der Tumortherapie wünschenswert, die Gefäßbildung zum Tumor zu stören, etwa indem Signalkaskaden unterbunden werden. „Das grundlegende Verständnis der Kommunikation zwischen Gefäßen und Organen gibt uns viele Ansatzpunkte und Ideen für therapeutische Interventionen“, erklärt Christian Helker.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Christian Helker
Fachbereich Biologie
Philipps-Universität Marburg
Tel.: 06421 28-23457
E-Mail: christian.helker@biologie.uni-marburg.de

Originalpublikation:

Julian Malchow, Christian Helker et al., Science Advances, DOI: 10.1126/sciadv.adk1174

https://www.uni-marburg.de

Media Contact

Anne Reichel Stabsstelle Hochschulkommunikation
Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartige biomimetische Sprechventil-Technologie

Ein Forschungsteam der Universität und des Universitätsklinikums Freiburg hat eine neuartige biomimetische Sprechventil-Technologie entwickelt, die die Sicherheit für Patient*innen mit Luftröhrenschnitt erheblich erhöhen könnte. Die Herausforderung: Bei unsachgemäßem Gebrauch von…

Kollege Roboter soll besser sehen

CREAPOLIS-Award für ISAT und Brose… Es gibt Möglichkeiten, Robotern beizubringen, in industriellen Produktionszellen flexibel miteinander zu arbeiten. Das Projekt KaliBot erreicht dabei aber eine ganz neue Präzision. Prof. Dr. Thorsten…

Neue einfache Methode für die Verwandlung von Weichmagneten in Hartmagnete

Ein Forscherteam der Universität Augsburg hat eine bahnbrechende Methode entdeckt, um einen Weichmagneten in einen Hartmagneten zu verwandeln und somit magnetische Materialien zu verbessern: mithilfe einer moderaten einachsigen Spannung, also…