Wie sich Gliazellen im Gehirn aus neuralen Vorläuferzellen bilden

In der Kulturschale entstandene Astrozyten, angefärbt für den Astrozyten-spezifischen Marker Glial Fibrillary Acidic Protein (GFAP) und den Kernfarbstoff DAPI. Dr. Neha Tiwari

Im Gehirn sind zwei Arten von Zellen aktiv: Nervenzellen und Gliazellen. Letztere wurden lange Zeit vor allem als Stützzellen betrachtet, spielen aber eine aktive Rolle bei der Kommunikation von Neuronen im Gehirn. Nach aktuellem Stand der Forschung sind Gliazellen zudem an der Entstehung neurodegenerativer Erkrankungen beteiligt.

Ein Forscherteam um Prof. Dr. Benedikt Berninger vom Institut für Physiologische Chemie der Universitätsmedizin Mainz hat nun neue Erkenntnisse erzielt, die dazu beitragen könnten, die durch Gliazellen bedingten Grundlagen neurodegenerativer Erkrankungen besser zu verstehen.

Konkret konnten sie zeigen, wie sich Gliazellen aus neuralen Vorläuferzellen bilden. Sie fanden heraus, dass die Differenzierung drei Stadien durchläuft und dass drei Proteine im Zellkern (sog. Transkriptionsfaktoren) daran wesentlich beteiligt sind, das Gliazellen-spezifische Ablesen der Gene im Zellkern zu orchestrieren. Die neuen Erkenntnisse wurden jetzt in der Fachzeitschrift „Cell Stem Cell“ veröffentlicht.

Gliazellen sind im Wesentlichen in drei Arten zu unterscheiden – Astrozyten und Oligodendrozyten (beide sog. Makroglia) sowie Mikroglia. Die häufigste Form sind die Astrozyten, die etwa 80 Prozent der gesamten Gliazellen ausmachen. Sie entstehen aus sogenannter Radialglia (hier auch als neurale Vorläuferzellen bezeichnet).

Wie Professor Berninger und seine Kollegen nun mittels der sogenannten RNA-Sequenzierung (einer Methode zur Charakterisierung aller Gene, die in einer Zelle gerade abgelesen werden) herausfanden, läuft der Differenzierungsprozess in drei Stadien ab: Im ersten Stadium bilden sich astrogliale Vorläuferzellen, die sich durch Zellteilung vermehren. Im zweiten Stadium werden aus diesen astroglialen Vorläuferzellen junge, unreife Astrozyten, die sich nicht mehr weiter teilen. Das dritte und letzte Stadium dient den Astrozyten dazu, sie vollständig heranreifen und voll funktionstüchtig werden zu lassen.

„Unsere Studie zeigt, dass der Prozess der Astrozytenbildung dynamisch verläuft und dass zu den unterschiedlichen Phasen der Bildung der Astrogliazellen jeweils andere Gene aktiv sind. Diese Gene werden durch jeweils Stadium-spezifische Transkriptionsfaktoren reguliert“, erklärt Professor Berninger. Konkret konnten Professor Berninger und sein Team zeigen, dass, um die Differenzierung von „frühen“ Astrozyten aus astroglialen Vorläuferzellen einzuleiten, die Transkriptionsfaktoren NFIA und ATF3 wichtig sind. Für den Übergang von „frühen“ Astrozyten zu voll ausdifferenzierten Astrozyten ist der Transkriptionsfaktor Runx2 entscheidend.

Wie vorangegangene Studien gezeigt haben, kann eine Fehlsteuerung der Genexpression in Astrozyten, diese dazu bringen, für Nervenzellen toxisch zu werden. In der Konsequenz sterben also Nervenzellen ab, wie es für neurodegenerative Erkrankungen symptomatisch ist.

„Da wir jetzt die für die Bildung von Astrozyten relevanten Prozesse besser verstehen, sind wir potentiell in der Lage, herauszufinden, was schiefläuft, wenn diese Zellen ihr gesundes Programm verlassen und beginnen, ein toxisches Programm zu entfalten“, unterstreicht die Molekulargenetikerin Dr. Neha Tiwari aus dem Team von Professor Berninger.

„Wir vermuten, dass der Transkriptionsfaktor Runx2 wichtig sein könnte, um zu verhindern, dass Astrozyten reaktiv werden. Reaktivität von Astrozyten bedeutet nicht automatisch, dass diese toxisch werden, aber sie ist eine Voraussetzung dafür“, so Professor Berninger. Und weiter: „Gegebenenfalls lässt sich in einem zukünftigen Projekt erforschen, wie sich Runx2 manipulieren lässt, um zu verhindern, dass Astrozyten neurotoxisch werden und ein Absterben von Nervenzellen bewirken.“

Originalpublikation: „Stage-Specific Transcription Factors Drive Astrogliogenesis by Remodeling Gene Regulatory Landscapes”; Neha Tiwari, Abhijeet Pataskar, Sophie Péron, Sudhir Thakurela, Sanjeeb Kumar Sahu, María Figueres-Oñate, Nicolás Marichal, Laura López-Mascaraque, Vijay K. Tiwari, Benedikt Berninger; https://www.sciencedirect.com/science/article/pii/S1934590918304454,
Cell Stem Cell Volume 23, Issue 4, 4 October 2018, Pages 557-571.e8,
DOI: https://doi.org/10.1016/j.stem.2018.09.008

Bildunterzeile: In der Kulturschale entstandene Astrozyten, angefärbt für den Astrozyten-spezifischen Marker Glial Fibrillary Acidic Protein (GFAP) und den Kernfarbstoff DAPI.
Bildquelle: Verwendung des Fotos kostenfrei unter Angabe der Quelle: Dr. Neha Tiwari

Kontakt
Prof. Dr. Benedikt Berninger
Institut für Physiologische Chemie
Universitätsmedizin der Johannes Gutenberg-Universität Mainz,
Telefon 06131 – 39-21334, E-Mail: berningb@uni-mainz.de

Pressekontakt
Oliver Kreft, Unternehmenskommunikation, Universitätsmedizin Mainz,
Telefon 06131 17-7424, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.400 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.800 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Prof. Dr. Benedikt Berninger
Institut für Physiologische Chemie
Universitätsmedizin der Johannes Gutenberg-Universität Mainz,
Telefon 06131 – 39-21334, E-Mail: berningb@uni-mainz.de

„Stage-Specific Transcription Factors Drive Astrogliogenesis by Remodeling Gene Regulatory Landscapes”; Neha Tiwari, Abhijeet Pataskar, Sophie Péron, Sudhir Thakurela, Sanjeeb Kumar Sahu, María Figueres-Oñate, Nicolás Marichal, Laura López-Mascaraque, Vijay K. Tiwari, Benedikt Berninger; https://www.sciencedirect.com/science/article/pii/S1934590918304454,
Cell Stem Cell Volume 23, Issue 4, 4 October 2018, Pages 557-571.e8,
DOI: https://doi.org/10.1016/j.stem.2018.09.008

Media Contact

Barbara Reinke M.A. idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…