Wie Umwelt und Mikrobiom gemeinsam die Körpergestalt prägen

The experiments showed that animals with a normal microbiome (left) showed fewer tentacles than their sterilized conspecifics.

© Dr Jan Taubenheim

Forschende aus Kiel und Düsseldorf untersuchen am Beispiel des Süßwasserpolypen Hydra, wie Umweltfaktoren und Mikroorganismen die Individualentwicklung beeinflussen

Alle vielzelligen Lebewesen sind von einer unvorstellbar großen Anzahl von Mikroorganismen besiedelt und haben sich in der Entstehungsgeschichte des vielzelligen Lebens von Beginn an gemeinsam mit ihnen entwickelt. Das natürliche Mikrobiom, also die Gesamtheit dieser Bakterien, Viren und Pilze, die in und auf einem Körper leben, ist von fundamentaler Bedeutung für den Gesamtorganismus: Es unterstützt beispielsweise bei der Nährstoffaufnahme oder wehrt Krankheitserreger ab.

Die Individualentwicklung eines Lebewesens wurde dagegen lange als ein von äußeren Faktoren unabhängiger, rein genetisch bestimmter Prozess betrachtet. Seit einiger Zeit ist jedoch klar, dass auch Entwicklungsprozesse nicht autonom stattfinden. Die meisten Lebewesen haben Strategien entwickelt, um Veränderungen in ihrer Umwelt zu erkennen und ihr individuelles Wachstum und damit auch die daraus resultierende Körpergestalt an die herrschenden Gegebenheiten anzupassen. Doch wie diese sogenannte phänotypische Plastizität gesteuert wird und wie dabei Umweltfaktoren einschließlich mikrobieller Einflüsse erkannt und in die genetischen Entwicklungsprogramme integriert werden, ist erst seit kurzem Gegenstand der Forschung.

Wissenschaftlerinnen und Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) und der Heinrich-Heine-Universität Düsseldorf (HHU) haben nun im Rahmen des Sonderforschungsbereichs (SFB) 1182 „Entstehen und Funktionieren von Metaorganismen“ die Prinzipien der phänotypischen Plastizität des Süßwasserpolypen Hydra untersucht. Dazu beobachteten sie, wie sich die Temperatur und die Anwesenheit bestimmter sie besiedelnder Bakterien auf die Individualentwicklung der Nesseltiere auswirken. Die Forschenden konnten zwei Hydra-spezifische Gene identifizieren und ihre Beteiligung an einem für die Entwicklung zentralen Signalweg nachweisen, die gemeinsam die Reaktion des Polypen auf Einflüsse aus seiner Umwelt steuern. Ihre Ergebnisse veröffentlichten sie kürzlich in der Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Hydren reagieren direkt auf Umwelteinflüsse

Das Forschungsteam unter der Leitung von Professor Sebastian Fraune von der HHU nutzte für seine Untersuchungen den stammesgeschichtlich alten und einfach organisierten Süßwasserpolypen Hydra. Das Nesseltier bietet sich für entwicklungsbiologische Studien besonders an, da es auch als ausgewachsenes Tier weiterhin embryonale Eigenschaften wie zum Beispiel eine unbegrenzte Regenerationsfähigkeit aufweist – sich also beispielsweise Körperteile wie die Tentakeln jederzeit neu bilden können.

„Hydren altern nicht, ihre genetischen Programme zur Steuerung der Entwicklung laufen permanent ab“, erklärt Fraune, Dadurch kann auch das erwachsene Tier jederzeit auf geänderte äußere Faktoren reagieren und seine Körpergestalt entsprechend daran anpassen“, so Fraune weiter.

Unter diesen Bedingungen untersuchten die Forschenden des SFB 1182, wie sich die genetische Aktivität des Tieres in Abhängigkeit von den Umweltbedingungen ändert. Dabei konnten sie zwei Gene identifizieren, die sie aufgrund ihrer Reaktion auf die Umweltbedingungen ‚Eco1’ und ‚Eco2’ nannten. Beide Gene sind taxonomisch beschränkt, was bedeutet, dass sie nur bei Hydra vorkommen. Das Forschungsteam setze die Tiere Temperaturen von jeweils 12 und 18 Grad Celsius aus und stellte fest, dass bei den kälteren Bedingungen beide Gene stark aktiviert wurden. Demgegenüber führte eine künstliche Entfernung der natürlichen bakteriellen Besiedlung der Tiere dazu, dass beide Gene deutlich weniger Aktivität zeigten.

Nachdem die Forschenden die an der Umweltwahrnehmung beteiligten Gene identifiziert hatten, untersuchten sie die Auswirkungen der beiden Variablen auf die Körpergestalt der Tiere: Die keimfrei gemachten Tiere neigten dazu, vermehrt Tentakeln zu bilden. Eine niedrige Umgebungstemperatur sorgte hingegen dafür, dass weniger Tentakeln entstanden. Gesteuert werden diese phänotypischen Anpassungen unter anderem durch einen bestimmten entwicklungsbiologischen Prozess, den sogenannten Wnt-Signalweg. „Diese Signale entstanden im Tierreich schon früh in der Evolution und sind auch beim Menschen an Entwicklungsprozessen wie beispielsweise der Stammzellregulation beteiligt“, erklärt Fraune.

„Wir konnten durch das experimentelle Ausschalten der Umweltgene Eco1 und Eco2 nachweisen, dass sie bei Hydra die Wnt-Signale unterdrücken können“, sagt Erstautor Dr. Jan Taubenheim, wissenschaftlicher Mitarbeiter in Fraunes Arbeitsgruppe. Äußere Faktoren wie die Temperatur oder die Abwesenheit des natürlichen Mikrobioms haben also einen direkten Einfluss auf die genetische Regulation des individuellen Entwicklungsprogramms und damit das Zustandekommen der Körpergestalt der Nesseltiere.

Arttypische Gene setzen Umwelteinflüsse um

Die Effekte der phänotypischen Plastizität lassen sich also auf Hydra-spezifische Gene zurückführen, die bei diesem Organismus die Anpassung an äußere Einflüsse regulieren. Damit liefert die Studie ein Beispiel für die Bedeutung solcher, wegen des Fehlens entsprechender Gene in anderen Arten auch als ‚orphan genes’ (Deutsch: ‚Waisen-Gene’) bezeichneten, Erbinformationen. Diese sich schnell entwickelnden Gene erlauben es verschiedenen Organismen zum Beispiel, sich an neue Energiequellen oder Lebensräume anzupassen. „Man wusste bereits, dass diese Gene zum Beispiel in das Entwicklungsprogramm eines Lebewesens eingreifen oder mit der Regulierung seines Immunsystems verbunden sind, um eine Umweltreaktion in der Entwicklung umzusetzen “, erklärt Co-Autor Professor Thomas Bosch von der CAU, Leiter des Sonderforschungsbereichs 1182. „Unsere Arbeit zeigt nun exemplarische Mechanismen auf, die dieser Erkennung der äußeren Faktoren zugrunde liegen. So konnten wir demonstrieren, welche internen Prozesse letztlich zur Anpassung des Entwicklungsprogramms eines Lebewesens als Reaktion auf seine Umgebung führen“, so Bosch weiter.

Über den SFB 1182:
Der Sonderforschungsbereich „Entstehen und Funktionieren von Metaorganismen“ ist ein interdisziplinäres Netzwerk unter Beteiligung von rund 80 Forschenden, das die Interaktionen spezifischer Mikrobengemeinschaften mit vielzelligen Wirtslebewesen untersucht. Es wird von der Deutschen Forschungsgemeinschaft (DFG) unterstützt und beschäftigt sich mit der Frage, wie Pflanzen und Tiere einschließlich des Menschen gemeinsam mit hoch spezifischen Gemeinschaften von Mikroben funktionale Einheiten (Metaorganismen) bilden. Ziel des SFB 1182 ist es, zu verstehen, warum und wie mikrobielle Gemeinschaften diese langfristigen Verbindungen mit ihren Wirtsorganismen eingehen und welche funktionellen Konsequenzen diese Wechselwirkungen haben. Im SFB 1182 sind Wissenschaftlerinnen und Wissenschaftler aus fünf Fakultäten der Christian-Albrechts-Universität zu Kiel (CAU), vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, dem Max-Planck-Institut für Evolutionsbiologie Plön, der Heinrich-Heine-Universität Düsseldorf, dem Leibniz-Institut für die Pädagogik der Naturwissenschaften und der Mathematik und der Muthesius Kunsthochschule zusammengeschlossen.

Fotos/Abbildungen stehen zum Download bereit:

https://www.uni-kiel.de/de/pressemitteilungen/2020/200-taubenheim-pnas-hydra.jpg
Bildunterschrift: Tiere mit einem normalem Mikrobiom (links) zeigen im Vergleich weniger Tentakeln als ihre keimfrei gemachten Artgenossen.
© Dr. Jan Taubenheim

https://www.uni-kiel.de/de/pressemitteilungen/2020/200-taubenheim-pnas-fraune.jp…
Bildunterschrift: Prof. Sebastian Fraune von der HHU erforscht unter anderem, wie Umweltfaktoren einschließlich mikrobieller Einflüsse erkannt werden und in die genetischen Entwicklungsprogramme eines Lebewesens einfließen.
© HHU

https://www.uni-kiel.de/de/pressemitteilungen/2020/200-taubenheim-pnas-taubenhei…
Bildunterschrift: Erstautor Dr. Jan Taubenheim konnte experimentell einen Zusammenhang zwischen Umweltfaktoren und der genetische Regulation der Individualentwicklung bei Hydra nachweisen.
© HHU

Weitere Informationen:

Zoologie und Organismischen Interaktionen, Heinrich-Heine-Universität Düsseldorf
http://www.organismicinteractions.hhu.de

AG Bosch, CAU:
http://www.bosch.zoologie.uni-kiel.de

SFB 1182 “Entstehen und Funktionieren von Metaorganismen”, CAU:
http://www.metaorganism-research.com

Wissenschaftliche Ansprechpartner:

Prof. Sebastian Fraune,
Zoologie und Organismischen Interaktionen, Heinrich-Heine-Universität Düsseldorf
Tel.: 0211 81-14991
E-Mail: fraune@hhu.de

Prof. Thomas Bosch
Sprecher SFB 1182 „Entstehen und Funktionieren von Metaorganismen“,
CAU
Tel.: 0431-880-4170
E-Mail: tbosch@zoologie.uni-kiel.de

Originalpublikation:

Taubenheim, J, Willoweit-Ohl, D, Knop, M, Franzenburg, S, Bosch, TCG and Fraune S (2020): Bacteria- and temperature-regulated peptides modulate β-catenin signaling in Hydra. PNAS First published 19 August 2020
https://doi.org/10.1073/pnas.2010945117

Gemeinsame Pressemitteilung der Christian-Albrechts-Universität zu Kiel (CAU) und der Heinrich-Heine-Universität Düsseldorf 

Weitere Informationen:

http://www.organismicinteractions.hhu.de
http://www.bosch.zoologie.uni-kiel.de
http://www.metaorganism-research.com

Media Contact

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

3D-Tumormodell für Retinoblastomforschung mit Fokus auf Tumor-Umgebungs-Interaktionen.

Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut

Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…

Private Brunnen als Notwasserversorgung zur Stärkung der Katastrophenresilienz.

Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half

Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…

DNA Origami-Strukturen steuern biologische Membranen für gezielte Medikamentenabgabe

Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können

Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…