Wiener Forscher finden eine mögliche Achillesferse des Coronavirus
– die Neutralisierung der SARS-CoV-2-Zuckerhülle.
Ein Team unter der Leitung von Forschern des Wiener IMBA (Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften) hat möglicherweise die Achillesferse des Coronavirus gefunden: Zwei zuckerbindende Proteine behindern SARS-CoV-2-Varianten am Eindringen. Die Ergebnisse, die das Potenzial für variantenübergreifende Therapien haben, wurden jetzt im renommierten EMBO Journal veröffentlicht.
Bei der Bekämpfung der Pandemie wird intensiv nach Möglichkeiten zur Eindämmung der Ausbreitung von SARS-CoV-2 geforscht. In diesem Zusammenhang ist das Spike (S)-Protein von besonderem Interesse, da es der Haupteintrittsmechanismus des Virus in die Wirtszellen darstellt. So bestimmt die Interaktion des SARS-CoV-2 S-Proteins mit dem Angiotensin Converting Enzyme 2 (ACE2) der Wirtszellen die Infektiosität des Virus. Die Bedeutung des S-Proteins für das Überleben und die Ausbreitung des Virus erfordert einen Tarnmechanismus, um es vor der Immunantwort des Wirts zu verbergen. Dabei nutzt das Virus einen so genannten Glykosylierungsmechanismus an bestimmten Stellen des S-Proteins, um eine Zuckerhülle zu bilden, die das antigene Protein vor der Immunreaktion des Wirts verbirgt.
Den Wolf im Schafspelz erkennen
Die Argumentation mag auf den ersten Blick einfach erscheinen, aber im Team um IMBA-Gruppenleiter Josef Penninger, der auch Direktor des Life Science Institute an der University of British Columbia (UBC) in Vancouver, Kanada, ist, tauchte sofort eine Frage auf: Was ist mit den Lektinen, den zuckerbindenden Proteinen? „Wir dachten intuitiv, dass die Lektine uns helfen könnten, neue Interaktionspartner des Spike-Proteins zu finden“, sagt Co-Erstautor David Hoffmann, ein ehemaliger Doktorand im Penninger-Labor am IMBA. Die Glykosylierungsstellen des SARS-CoV-2-Spike-Proteins sind bei allen zirkulierenden Varianten hoch konserviert. Durch die Identifizierung von Lektinen, die diese Glykosylierungsstellen binden, könnten die Forscher also auf dem besten Weg sein, robuste therapeutische Maßnahmen zu entwickeln.
Das Team entwickelte und testete eine Bibliothek mit über 140 Säugetierlektinen. Unter diesen wurden zwei gefunden, die stark an das SARS-CoV-2 S-Protein binden: Clec4g und CD209c. „Wir haben nun Werkzeuge in der Hand, die die Schutzschicht des Virus binden und damit das Virus am Eindringen in Zellen hindern können“, fasst Stefan Mereiter, Co-Erstautor und Postdoktorand aus dem Penninger-Labor, zusammen. Mereiter: „Dieser Mechanismus könnte in der Tat die Achillesferse sein, auf die die Wissenschaft schon lange gewartet hat.“
Der Weg vom „Immunitätsschild“ oder „Schafspelz“ von SARS-CoV-2 zu seiner Achillesferse führte über mehrere moderne Forschungstechniken. In Zusammenarbeit mit Peter Hinterdorfer vom Institut für Biophysik der Universität Linz hat das Team mit biophysikalischen Hightech-Methoden untersucht, wie die Lektinbindung im Detail abläuft. Die Forscher maßen zum Beispiel, welche Bindungskräfte und wie viele Bindungen zwischen den Lektinen und dem S-Protein auftreten. So wurde auch klar, an welche Zuckerstrukturen Clec4g und CD209c binden.
Therapien in Sicht
Eine weitere gute Nachricht: Das Team fand heraus, dass die beiden Lektine an die N-Glykanstelle N343 des S-Proteins binden. Diese spezifische Stelle ist so entscheidend für den Spike, dass sie bei keiner infektiösen Variante verloren gehen kann. Tatsächlich macht eine Deletion dieser Glykosylierungsstelle das S-Protein instabil. Darüber hinaus haben andere Gruppen gezeigt, dass Viren mit mutiertem N343 nicht infektiös sind. „Das bedeutet, dass unsere Lektine an eine Glykanstelle binden, die für die Funktion von Spike essentiell ist – es ist daher sehr unwahrscheinlich, dass jemals eine Mutante entstehen könnte, der dieses Glykan fehlt“, erklärt Mereiter.
Zur Freude des Teams verringerten die beiden Lektine auch die SARS-CoV-2-Infektiosität von menschlichen Lungenzellen. Für Josef Penninger und das gesamte Team sind diese Ergebnisse vielversprechend für variantenreiche therapeutische Interventionen gegen SARS-CoV-2.
Penninger: „Der Ansatz ist vergleichbar mit dem Mechanismus des Medikamentenkandidaten ‚APN01‘ [Apeiron Biologics], der sich in fortgeschrittenen klinischen Studien befindet. Dabei handelt es sich um ein biotechnologisch hergestelltes menschliches ACE2, das ebenfalls an das Spike-Protein bindet. Wenn das S-Protein von dem Medikament besetzt ist, wird der Zugang zur Zelle blockiert. Jetzt haben wir natürlich vorkommende Lektine von Säugetieren identifiziert, die genau das tun können.“
Der künstlichen Herstellung des SARS-CoV-2 Spikeproteins unter kontrollierten Bedingungen folgte am Institut für Biochemie an der Universität für Bodenkultur Wien (BOKU) mit der exakten Lokalisierung der konservierten Zuckerkette, an welcher körpereigene Lektine das Virus festhalten können. Die Herstellung wurde von Prof. Lukas Mach im Rahmen der BOKU Covid-Initiative koordiniert. Diese hochspezialisierte Form der Glykoprotein-Analytik stellt seit Jahrzehnten den Forschungsschwerpunkt der Arbeitsgruppe Altmann dar. „Obwohl die Analyse des Spike-Glykoproteins schon unter Normalbedingungen eine durchaus beachtliche Herausforderung darstellt, war es in diesen besonderen Zeiten von home-office, distance-learning und harter Lock-downs nur durch das großartige Zusammenspiel aller möglich, die notwendigen Messungen durchzuführen. Dafür möchte ich mich bei den beteiligten Personen herzlich bedanken!”, sagt Johannes Stadlmann, Projektverantwortlicher in der Gruppe Altmann.
An dieser Arbeit war ein internationales Forscherteam beteiligt, darunter Ali Mirazimi vom Karolinska Institutet in Stockholm, Schweden. Darüber hinaus haben mehrere führende Forscher in Österreich zu dieser Arbeit beigetragen: Johannes Stadlmann, Chris Oostenbrink, Lukas Mach und Friedrich Altmann von der BOKU, Peter Hinterdorfer von der Johannes Kepler Universität Linz sowie Gerald Wirnsberger von Apeiron Biologics in Wien.
Originalveröffentlichung:
Hoffmann D., Mereiter, S. et al., “Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites”, EMBO J, 2021. DOI: 10.15252/embj.2021108375
https://www.embopress.org/doi/10.15252/embj.2021108375
Über das IMBA
Das IMBA – Institut für Molekulare Biotechnologie – ist das größte Institut der Österreichischen Akademie der Wissenschaften (ÖAW) mit dem Fokus auf zukunftsweisende Grundlagenforschung. 16 Forschungsgruppen stellen sich den molekularen Rätseln und unerforschten Gebieten der Molekularbiologie und Medizin. Erkenntnisse aus den Bereichen Zell- und RNA-Biologie, molekularer Medizin und Stammzellbiologie bilden den Nährboden für eine Medizin der Zukunft.
Originalpublikation:
Hoffmann D., Mereiter, S. et al., “Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites”, EMBO J, 2021. DOI: 10.15252/embj.2021108375
https://www.embopress.org/doi/10.15252/embj.2021108375
Weitere Informationen:
https://bit.ly/Lektine_SARS-CoV-2 Link zur Presseaussendung auf der IMBA Webseite
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…