Wirkstoff-Forschung: Die Struktur von Nano-Genfähren entschlüsseln
LMU-Forschende haben untersucht, wie sich kationische Polymere beim Transport von RNA-Medikamenten auf molekularer Ebene organisieren.
Kationische Polymere sind ein vielversprechendes Werkzeug für den Transport von RNA-Therapeutika oder RNA-Impfstoffen und werden ähnlich wie Lipid-Nanocarrier bei mRNA-Impfstoffen eingesetzt. Die nanoskopischen Verpackungsmaterialien sind in der Lage, ihre Ladung effektiv zu schützen und sie in die Zielzellen zu verfrachten. „Wir stellen Genfähren her, in die man alle möglichen therapeutischen Nukleinsäuren einbringen kann, um diese unbeschadet an den Wirkort zu bringen“, erklärt Professorin Olivia Merkel, Inhaberin des Lehrstuhls für Drug Delivery an der Fakultät für Chemie und Pharmazie der LMU.
Um die Wirksamkeit dieser Genfähren weiter zu verbessern, sei es jedoch wichtig, zu verstehen, wie sich diese Partikel auf molekularer Ebene organisieren, RNA verkapseln und wieder freigeben – ein Aspekt, der bisher noch nicht vollständig untersucht wurde. Merkel ist Leiterin einer neuen Studie, die im Rahmen ihres ERC-Forschungsprojekts RatInhalRNA (Rational and Simulation-Supported Design of Inhalable RNA Nanocarriers) neue Erkenntnisse über die Organisation der Nanocarrier erbracht hat. Die Ergebnisse wurden kürzlich im Fachmagazin Nano Letters publiziert.
„Unsere Forschung nutzte eine Technik namens Coarse-Grained Molecular Dynamics (CG-MD), um die Partikel zu simulieren und zu visualisieren“, erklärt die Forscherin. Der Fokus lag dabei auf der Frage, wie Änderungen in der Polymerstruktur und den Umgebungsbedingungen die Partikelbildung beeinflussen. Die Simulationen wurden in Laborexperimenten mittels Kernspinresonanzspektroskopie (NMR) bestätigt und zeigten, dass die CG-MD-Technik detaillierte Einblicke in die Struktur und das Verhalten von RNA-Nanopartikeln liefern kann.
„Diese Studie unterstreicht den Wert von CG-MD bei der Vorhersage und Erklärung der Eigenschaften von RNA-Nanoformulierungen, was die Entwicklung besserer Systeme für zukünftige medizinische Anwendungen unterstützen kann“, so Merkel.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Olivia Merkel
Fakultät für Pharmazie
Ludwig-Maximilians-Universität München
olivia.merkel@cup.uni-muenchen.de
Tel.: +49 89 2180 77022
Originalpublikation:
Katharina M. Steinegger, Lars Allmendinger, Sebastian Sturm, Felix Sieber-Schäfer, Adrian Philipp Eckart Kromer, Knut Müller-Caspary, Benjamin Winkeljann & Olivia M. Merkel: Molecular Dynamics Simulations Elucidate the Molecular Organization of Poly(beta-amino ester) Based Polyplexes for siRNA 3 Delivery. Nano Letters 2024
https://doi.org/10.1021/acs.nanolett.4c04291
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne
Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…
Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten
Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….
Langlebig, Effizient, Nachhaltig: Der Aufstieg von Ceriumoxid-Thermoschaltern
Bahnbrechende Thermoschalter auf Basis von Ceriumoxid erreichen bemerkenswerte Leistungen und revolutionieren die Steuerung des Wärmeflusses mit nachhaltiger und effizienter Technologie. Ceriumoxid-Thermoschalter revolutionieren die Steuerung des Wärmeflusses Thermoschalter, die den Wärmeübergang…