Zucker bringt viel Kohlendioxid ins tiefe Meer

Mit diesen in-situ-Pumpen wurden die untersuchten Algenproben aus tieferen Wasserschichten des Arktischen Ozeans gewonnen. Max-Planck-Institut für Marine Mikrobiologie/S. Becker

Im lichtdurchfluteten Oberflächenwasser der Ozeane wandeln photosynthetisch aktive, sehr kleine Pflanzen wie, Kieselalgen (Diatomeen), mehr Kohlendioxid in Biomasse um als die tropischen Regenwälder.

Dabei binden Kieselalgen ebenso wie Pflanzen an Land Kohlendioxid als polymerische Kohlenhydrate – also als langkettige Zucker. Allerdings war es bislang noch nicht gelungen zu klären, wie viel Kohlendioxid über diesen Prozess im Meer gebunden werden kann.

Diese Wissenslücke interessierte die Mitglieder der Forschungsgruppe Marine Glykobiologie des Max-Planck-Instituts für Marine Mikrobiologie und des MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen in Zusammenarbeit mit dem Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung.

Um sie zu schließen, verwendeten die Wissenschaftlerinnen und Wissenschaftler unlängst entwickelte Enzyme, um aus den Bestandteilen von Mikroalgen, wie Diatomeen, die Konzentration des langkettigen Zuckers Laminarin zu messen, einem wichtigen Energieträger für diese Pflanzen.

Laminarin bindet Kohlendioxid

Anhand von Mikroalgen aus dem Arktischen, Atlantischen und Pazifischen Ozean sowie aus der Nordsee konnten die Forschenden abschätzen, dass im Durchschnitt rund 26 Prozent dieser Algen-Biomasse aus dem Zucker Laminarin bestehen.

„Aus dieser Menge lässt sich ableiten, dass durch Photosynthese in der Ozeanoberfläche jährlich rund zwölf Gigatonnen Kohlenstoff in Form von Laminarin in Algen produziert wird“, sagt Stefan Becker, Erstautor der Studie, die im März 2020 im Fachmagazin PNAS publiziert wurde. „Das ist eine sehr große Menge, wenn man bedenkt, dass die Menschheit dem Global Carbon Budget 2019 zufolge im Jahr 2018 rund 11,5 Gigatonnen Kohlenstoff freigesetzt hat.“

Allerdings werde nur ein kleiner Teil des Kohlenstoffs, der durch Laminarin gebunden wird, der Atmosphäre dauerhaft entzogen. Durch natürliche Prozesse wird ein Großteil im Folgenden wieder freigesetzt. Insgesamt haben die Ozeane im Jahr 2018 rund 2,6 Gigatonnen Kohlenstoff dauerhaft aufgenommen. „Unsere Erkenntnisse weisen aber darauf hin, dass Zucker, wie Laminarin, auch wichtig für die dauerhafte Fixierung von Kohlenstoff im Meer sind“, sagt Becker.

So ist ein weiteres Ergebnis der Forschung, dass der Zucker rund die Hälfte des organischen Kohlenstoffs in sinkenden Diatomeen-Partikeln ausmacht. „Laminarin spielt dadurch eine wichtige Rolle beim Transport von Kohlenstoff von der Oberfläche des Ozeans in die Tiefe“, sagt Jan-Hendrik Hehemann, Leiter der Forschungsgruppe Marine Glykobiologie. „Ob Laminarin hier langfristig deponiert wird, ist nun eine wichtige weitergehende Fragestellung, die wir angehen werden.“

Schwankungen im Tagesverlauf

Weiterhin zeigen die Forschungsergebnisse die hohe Bedeutung von Laminarin für die Ökologie der Ozeane. Mikroalgen bilden die Basis der marinen Nahrungskette; die Konzentration des Zuckers ist in den kleinen Pflanzen aber nicht immer gleich. So stellten die Wissenschaftlerinnen und Wissenschaftler aus Bremen Schwankungen im Tagesverlauf fest.

„Die Zucker-Konzentration in den Zellen der Algen steigt während des Tages stark an und sinkt über den Verlauf der Nacht, ähnlich wie die Jahreszeiten-abhängige Energie-Speicherung in stärkehaltigen Früchten oder Pflanzenwurzeln an Land“, sagt Hehemann. „Dies hat möglicherweise einen großen Einfluss auf das Fraßverhalten von Tieren im Meer. Denn die Tageszeit bestimmt, wie viel Zucker – und damit Energie – die Tiere beim Fressen aufnehmen.“

So erfüllt Laminarin wichtige ökologische Funktionen im Ozean und die großen Mengen des Zuckers, die im Ozean gefunden wurden, unterstreichen die hohe Bedeutung des Stoffes im globalen Kohlenstoffkreislauf.

Dr. Jan-Hendrik Hehemann
MARUM-MPG Brückengruppe Marine Glykobiologie
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Telefon: +49 421 2028-736
E-Mail: jheheman@mpi-bremen.de

Katrin Matthes
Presse & Kommunikation
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Telefon: +49 421 2028-947
E-Mail: kmatthes@mpi-bremen.de

DOI: 10.1073/pnas.1917001117

Media Contact

Dr. Fanni Aspetsberger Max-Planck-Institut für Marine Mikrobiologie

Weitere Informationen:

https://www.mpi-bremen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…