Silizium-Dünnschichtsolarzellen auf dem Vormarsch

11,2 Prozent lautet die neueste Zahl aus den Labors des Instituts für Photovoltaik (IPV) des Forschungszentrums Jülich. Diesen stabilen Wirkungsgrad haben die Wissenschaftler bei einer ein Quadratzentimeter großen Silizium-Dünnschichtsolarzelle erzielt. Im nächsten Schritt gilt es, das erfreuliche Ergebnis auf größere Solarmodule zu übertragen. Auch hier haben die Jülicher bereits erste Erfolge vorzuweisen und die Forschungen laufen weiterhin auf Hochtouren.

Sonnenlicht preiswert direkt in Strom zu wandeln ist ein wichtiges Ziel moderner Energieforschung. Silizium-Dünnschichtsolarzellen versprechen vergleichsweise geringere Kosten als herkömmliche Solarzellen. Doch um ein Massenprodukt der Zukunft zu werden, müssen die Wirkungsgrade großflächiger Module im Langzeitbetrieb von zurzeit etwa 6 bis 7 Prozent erst auf 10 Prozent klettern. Im Labormaßstab haben Jülicher Wissenschaftler nun eine Silizium-Dünnschichtsolarzelle hergestellt, deren Wirkungsgrad auch nach über 1000 Stunden Sonneneinstrahlung bei stabilen 11,2 Prozent lag. Damit haben sie eine erste Hürde auf dem Weg zum marktreifen Produkt mit Erfolg genommen.

Silizium-Dünnschichtsolarzellen bestehen aus mehreren Schichten, die mithilfe verschiedener Techniken im Vakuum auf einem Glassubstrat abgeschieden werden. Durch eine erste Schicht aus transparentem und leitfähigem Metalloxid (TCO= transparent conductive oxide) fällt das Sonnenlicht auf die Silizium-Schicht: Hier wird es geschluckt und die dabei erzeugten Ladungsträger nach außen abtransportiert – fertig ist der Solarstrom.

Bewährt hat sich das Konzept der Stapelzellen mit mehreren übereinander liegenden Silizium-Schichten. Zudem steigt der Wirkungsgrad, wenn eine Schicht aus dem für Dünnschichtsolarzellen üblichen amorphen Silizium besteht und eine zweite aus einer weiteren Variante, dem mikrokristallinen Silizium. „Mit einer solchen Tandemzelle haben wir die 11,2 Prozent erzielt“, freut sich Dr. Bernd Rech vom IPV, „das war sozusagen Stufe eins. Die wirklichen Vorteile der Dünnschichttechnologie zeigen sich dann in Stufe zwei, beim Übergang von einer einzelnen Zelle zum Solarmodul.“

In einem Solarmodul sind viele einzelne Solarzellen in Serie geschaltet, daher addieren sich deren Spannungen. Bei herkömmlichen Modulen werden einzelne Solarzellen angefertigt und anschließend durch Kontakte miteinander verbunden. Bei der Dünnschichttechnologie dagegen ist die Verschaltung bereits in die Herstellung integriert: Ein Laser schneidet die Metalloxid- und die Silizium-Schicht jeweils gleich, nachdem sie auf einem großflächigen Glassubstrat abgeschieden wurden, in einzelne Streifen; diese Streifen sind dann elektrisch in Serie geschaltet.

Die Jülicher Wissenschaftler arbeiten daran, eine komplette Prozesstechnologie für solche großflächigen (30 x 30 Quadratzentimeter großen) Glassubstrate aufzubauen. Die Silizium-Beschichtung funktioniert bereits, Anlagen zur Metalloxid-Beschichtung sowie zum Laserschneiden sollen in der zweiten Jahreshälfte im Rahmen eines Workshops eingeweiht werden. „Wir wollen keine Rekorde in Einzeldisziplinen aufstellen, sondern Mehrkampfmeister werden und einen in dieser Form einzigartigen Komplettansatz liefern“, erläutert Bernd Rech das Jülicher Konzept, „unser Ziel ist ein industrienah und kostengünstig hergestellter, technologisch ausgereifter Prototyp.“

Dass sich die guten Wirkungsgrade ihrer Tandemzellen vom Labormaßstab tatsächlich auf industrielle Größen aufskalieren lassen, haben die Jülicher Wissenschaftler auch schon gezeigt: Dazu arbeiten sie mit dem Industriepartner RWE Solar GmbH, Geschäftsgebiet Phototronics, zusammen, der bereits seit vielen Jahren 0,6 Quadratmeter (6000 Quadratzentimeter) große Dünnschichtmodule auf Basis des amorphen Siliziums herstellt. Ein Modul des neuen Jülicher Aufbaus mit einer aktiven Fläche von immerhin schon 644 Quadratzentimetern zeigte einen Anfangswirkungsgrad von 10,3 Prozent. Doch der ist durchaus ausbaufähig, ist sich Bernd Rech sicher, denn das für das Testmodul benutzte Glassubstrat war bereits mit einem kommerziellen TCO vorbeschichtet. In Jülich verfolgen die Wissenschaftler aber einen neuen Ansatz: Sie verwenden Zinkoxid als TCO, das durch Sputtern auf das Glas aufgebracht wird. Sputtern ist ein gängiges Verfahren, mit dem beispielsweise in der Glasindustrie Isolierglasscheiben gefertigt werden. Aufgeraut mit Salzsäure ist Zinkoxid zudem ein exzellenter Lichtfänger. „Auch unsere 11,2 Prozent Einzel-Zelle enthielt dieses Zinkoxid. Durch die Kombination von neuen Materialien mit ausgefeilter Prozesstechnologie werden wir auch bei großflächigen Dünnschichtmodulen dem Wirkungsgrad herkömmlicher Solarmodule nahe kommen“, prophezeit Bernd Rech, „und langfristig wird sich die preiswertere Dünnschichttechnologie auf dem Markt durchsetzen.“

Media Contact

Peter Schäfer idw

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…

Mikroskopische Ansicht von Blutzellen, die Forschungsergebnisse zu ASXL1-Mutationen darstellen.

ASXL1-Mutation: Der verborgene Auslöser hinter Blutkrebs und Entzündungen

Wissenschaftler zeigen, wie ein mutiertes Gen rote und weiße Blutkörperchen schädigt. LA JOLLA, CA – Wissenschaftler am La Jolla Institute for Immunology (LJI) haben herausgefunden, wie ein mutiertes Gen eine…