Entwicklungen für die nächste Mobilfunkgeneration – FBH auf der GeMiC 2020

Digitaler Leistungsverstärker für die mobile Kommunikation FBH/P. Immerz

Erste Untersuchungen digitaler Verstärker im Sub-Terahertz-Bereich

Industrie 4.0, Smart Home & Smart Farming – mit der Digitalisierung steigen Datenmengen und Datenraten stetig an. Bisherige Frequenzbereiche in der herkömmlichen Mobilfunkkommunikation stoßen an ihre Grenzen.

Höhere Signalbreiten im Sub-Terahertz (THz)-Bereich ab 100 GHz werden daher immer interessanter – vor allem im Hinblick auf 6G. Energieeffiziente Verstärkerkonzepte für diesen Frequenzbereich sind hierbei von besonderer Relevanz, weil die Sende-Verstärker in Kommunikationssystemen den Großteil der Energie verbrauchen.

Ressourcenschonende digitale Hochfrequenz-Leistungsverstärker bieten das größte Potenzial, Stromverbrauch und Betriebskosten zu senken. Dies ist ein wichtiger Schritt in Richtung Green-IT. Auf der German Microwave Conference präsentiert das FBH erstmalig Untersuchungsergebnisse des digitalen Leistungsverstärker-Konzepts im Sub-THz-Bereich.

Dabei werden erste Optimierungsansätze für die Modellierung der Transistoren und Verstärker vorgestellt – Grundstein für neuartige, flexible und kompakte digitale Senderketten bis 200 GHz auf dem FBH-eigenen Indiumphosphid (InP)-Prozess.

FBH-Entwicklungen auf der begleitenden Ausstellung

Versorgungsspannungs-Modulation (Envelope Tracking) ist ein weiterer Ansatz, mit dem das Ferdinand-Braun-Institut die Effizienz von HF-Leistungsverstärkern verbessert. Hierbei wird die Versorgungsspannung des Verstärkers entsprechend der momentanen Hüllkurve des zu verstärkenden Signals moduliert.

Dazu werden zwei neuartige Demonstratoren ausgestellt. Zusammen mit der Europäischen Weltraumagentur ESA hat das Institut einen Verstärker für die Satellitenkommunikation bei 1,62 GHz entwickelt. Darüber hinaus überträgt das FBH das Konzept der Versorgungsspannungs-Modulation auch auf Millimeterwellen-Verstärker, z.B. für 5G. Das Modul arbeitet im Bereich von 20 – 26 GHz.

Auf dem Gebiet der Terahertz-Elektronik stellt das FBH THz-Detektoren auf Basis von GaN-HEMT-MMICs vor, die sich zu 2D-Arrays anordnen lassen. Sie eignen sich u.a. dafür, Kunststoffe zerstörungsfrei auf Materialfehler zu überprüfen. Mit besten Werten für die äquivalente Rauschleistung NEP < 25 pW/sqrt(Hz) und höchster Empfindlichkeit von > 100mA/W bei 500 GHz übertreffen sie bisherige THz-Detektoren in CMOS-Technologie.

Kontakt Presse- und Öffentlichkeitsarbeit:
Petra Immerz, M.A.
Communications Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. 030.6392-2626
Fax 030.6392-2602

E-Mail petra.immerz@fbh-berlin.de
Web www.fbh-berlin.de

Media Contact

Anja Wirsing Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…