Festkörperbatterien – schneller hergestellt
Festkörperbatterien bieten zahlreiche Vorteile gegenüber Lithium-Ionen-Akkus: So sind sie beispielsweise nicht brennbar. Doch fehlte bislang eine skalierbare Produktionsmethode. Eine solche haben Forschende des Fraunhofer IPA gemeinsam mit Partnern nun im kürzlich abgeschlossenen Projekt EMSiG entwickelt.
Sei es in E-Fahrrädern, Elektroautos oder Laptops – üblicherweise nutzt man für die nötige Energieversorgung Lithium-Ionen-Batterien. Festkörperbatterien punkten diesen gegenüber mit gewichtigen Vorteilen: Vor allem bieten sie eine höhere Sicherheit.
Schließlich haben sie keinen flüssigen Elektrolyten, der auslaufen und sich entzünden kann. Auch ist ihre Energiedichte höher, die Lebensdauer länger. Das Manko: Bisher wurden Festkörperbatterien mit einer Elektrolyt-Schicht aus Keramik nur im Labormaß- stab gefertigt.
Forschende des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA haben im Projekt »Erforschung neuer Misch- und Sintertechnologien für gradierte keramische Festkörperelektrolyte«, kurz EMSiG, nun die Grundlagen gelegt, um die Festkörper-Lithium-Ionenbatterien industrienah weiterzuentwickeln. Das Projekt wurde gemeinsam mit den mittelständischen Unternehmen Dr. Fritsch Sondermaschinen GmbH und Dr. Fritsch GmbH & Co. KG durchgeführt und vom Land Baden-Württem- berg mit über einer Million Euro gefördert. »Wir konnten die Produktion der Festkör- perbatterien vom Labormaßstab auf ein industrienahes, skalierbares Level heben«, erläutert Jonas Heldt, Wissenschaftler am Fraunhofer IPA.
Nadelöhr Rohstoffe
Sollen Festkörperbatterien den Sprung in die industrielle Anwendung schaffen, braucht es zunächst einmal ausreichend Rohstoffe. Doch die benötigten Ausgangsmaterialien – etwa der im Projekt eingesetzte Festkörperelektrolyt Lithium-Aluminium-Titan-Phosphat (LATP) – werden bislang industriell nicht verwendet und daher auch nicht in größeren Mengen produziert. Der Projektpartner Dr. Fritsch GmbH & Co. KG analysierte die Marktlage: Wo lassen sich die nötigen Rohstoffe beziehen, wie müssen sie aufbereitet werden? »Die Herausforderung ist hier nicht die Verfügbarkeit der einzelnen Rohstoffe an sich, sondern die noch relativ geringe Anzahl von Herstellern, die daraus das Festkörperelektrolyt LATP fertigen. Erfahrungsgemäß wird diese aber mit der Nachfrage nach dem Endprodukt schnell wachsen«, sagt Elke Ade, Leiterin Geschäftsbereich Metallpulver bei der Dr. Fritsch GmbH & Co. KG.
Entwicklung industrienaher Herstellverfahren
Neben einer gesicherten Rohstofflage sind industrienahe Produktionsprozesse gefragt, die sich auf einen größeren Durchsatz hochskalieren lassen. Klassischerweise beschich- tet man Folien, damit sie als Anode, Kathode und neutrale Zwischenschicht dienen, und setzt diese zur Batterie zusammen. Bei Keramiken dient dagegen Pulver als Ausgangsmaterial. Um dieses in eine feste Form zu bringen, muss es gesintert werden – also unter Druck erhitzt. Dazu untersuchte das Team verschiedene Verfahren. Am vielversprechendsten war es, die Pulver trocken in einer Form aufeinanderzu- schichten. Dabei brachte das Team neben Kathoden-, Anoden- und Elektrolytschicht Zwischenschichten ein, um den Elektrolytanteil nicht allzu abrupt ansteigen zu lassen. Diese graduellen Übergänge verringern mechanische Spannungen und verbessern Übergangswiderstände in der gesinterten Batterie.
Die gefüllte Form wurde in eine Sinterpresse eingelegt, genauer gesagt einer FAST/SPS-Sinterung unterzogen: Dabei werden die Materialien unter hohem Druck und vergleichsweise niedrigen Tempera- turen mit einem Stempel zusammengedrückt. Statt Stunden, die bei herkömmlichen Sinterverfahren nötig wären, dauert dies nur wenige Minuten. »Über dieses Verfahren lassen sich mehrere gradierte Schichten von Kathode und Separator in einem einzelnen Herstellungsschritt produzieren«, fasst Heldt zusammen, »was den Arbeitsaufwand erheblich reduziert und eine spätere Skalierung zu größeren Durchsätzen erlaubt.« Die Basis für eine industrielle Produktion der Festkörperbatterien ist also gelegt.
Wissenschaftliche Ansprechpartner:
Jonas Heldt | Telefon +49 711 970- 3815 | jonas.heldt@ipa.fraunhofer.de | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA | www.ipa.fraunhofer.de
Weitere Informationen:
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…