Gesteuertes Laden von E-Autos

Im Labor der Arbeitsgruppe lassen sich digitale Signale der Computersimulationen umwandeln in echten Strom.
(c) P. Pollmeier/FH Bielefeld

KI generiert Daten für KI

Elektrotechniker Dr. Ing. Michael Kelker hat im Rahmen seiner Doktorarbeit an der FH Bielefeld eine intelligente Steuerung für Elektrofahrzeuge entwickelt. Sie macht eine weiterhin schnelle Ladung möglich, ohne dabei das elektrische Netz zu überlasten. Sein Ansatz, bei dem eine KI einer KI Informationen liefert, könnte der Elektromobilität in Deutschland weiter auf die Sprünge helfen.

Aus der Garage heraus, über die Einfahrt hinweg schlängelt sich das Kabel. „Ein Fahrzeug allein ist nicht das Problem“, sagt Michael Kelker, steckt den Stecker in den Anschluss am Auto und startet die Ladung. Aber wenn es in fast jedem Haushalt ein E-Auto gibt, und alle wollen nach Feierabend ihr Fahrzeug zeitgleich aufladen? „Das könnte das elektrische Netz derzeit überlasten. Die Sicherung würde ausgelöst, und die Häuser hätten keinen Strom mehr.“ Soweit muss es nicht kommen, findet Kelker. Er setzt in seiner Dissertation an der Fachhochschule (FH) Bielefeld erfolgreich auf Künstliche Intelligenz (KI), um Elektrofahrzeuge schnell und sicher zu laden.

Doktorarbeit im Rahmen des Projekts KI-Grid

Der 32-Jährige hat sich bereits im Bachelor Regenerative Energien intensiv mit der Energiewende befasst und sich im Master Elektrotechnik auf die elektrischen Netze spezialisiert. Das Forschen hat es ihm angetan. Bei der FH-Arbeitsgruppe Netze und Energiesysteme (AGNES) ist der Ingenieur genau richtig: Geleitet von Prof. Dr.-Ing. Jens Haubrock, im Fachbereich Ingenieurwissenschaften und Mathematik zuständig für das Lehrgebiet Regenerative Energiesysteme und Elektrotechnik, forscht die Arbeitsgruppe in verschiedenen Projekten an technischen Lösungen zur Beobachtung, Steuerung und Führung elektrischer Netze. Seit 2018 ist Michael Kelker als Wissenschaftlicher Mitarbeiter dabei, und seit kurzem ist er der erste Promovierte der Gruppe: Im Dezember hat er seine Doktorarbeit verteidigt, als kooperative Promotion mit der Technischen Universität (TU) Ilmenau.

Die Arbeit ist im Rahmen des Projekts KI-Grid entstanden, das die Integration von Elektrofahrzeugen in das elektrische Netz mit Hilfe von KI erforscht. „Elektrofahrzeuge sind eine große neue Last für das Niederspannungsnetz“, sagt Kelker. „Ein Privathaushalt benötigt allerhöchstens 20 kW Leistung für sämtliche Geräte. Wenn dann ein Elektrofahrzeug mit einer maximalen Ladeleistung von 11 kW hinzukommt, steigt der Verbrauch in Spitzen um gut 50 Prozent.“ Den neuen, hohen Verbrauchern steht eine schwankende Energieerzeugung gegenüber, welche die immer weiter ausgebauten erneuerbaren Energien naturgemäß liefern – so scheint beispielsweise nicht ständig die Sonne, erläutert der Wissenschaftler.

Daten wurden durch künstliches neuronales Netz generiert

Die Lösung könnte ganz einfach sein: Lädt man Elektrofahrzeuge bei minimaler Leistung, kann man Überlastungen der Netze vermeiden. Aber: „Das dauert“, sagt Michael Kelker. Und eine stundenlange Ladedauer trägt nicht unbedingt zur Akzeptanz von Elektromobilität bei. Kelker hatte eine bessere Idee: „Die Steuerung der Ladung durch eine KI, die je nach Auslastung des Netzes die Ladeleistung erhöht oder reduziert. So wird eine möglichst schnelle Ladung erreicht, ohne das Netz zu überlasten.“

Der Haken daran: Wie soll die KI die Auslastung des Netzes erkennen? Entsprechende Messtechnik, die die benötigten Daten liefern könnte, fehlt im Niederspannungsnetz weitgehend. Kelkers Lösung ist eine echte Innovation: „Ich setze für die Datengenerierung ebenfalls eine KI ein, genauer ein künstliches neuronales Netz (Artificial Neural Network (ANN)) und trainiere es so, dass es der anderen KI eine möglichst genaue und realistische Netzzustandsschätzung für die Steuerung der Ladeleistung liefert. Zwei verschiedene KIs werden also miteinander gekoppelt.“

Das Reinforcement Learning der KI benötigt enorme Rechenzeit

Bei aller Anwendungsbezogenheit – zur Ausarbeitung seines Ansatzes ist Michael Kelker dann doch ins Labor gegangen und nicht ins reale Netz mit echten Fahrzeugen, bedeutet seine Forschung doch ausprobieren, verändern, weiter ausprobieren und auch mal scheitern. „Das sollte dann besser im geschützten Raum passieren und nicht im realen elektrischen Netz“, sagt Kelker. Im Labor der Arbeitsgruppe lassen sich am Computer reale Netzabschnitte simulieren. „Mit Hilfe dieser Simulationen habe ich dann die Daten generiert, die ich für das Training meines ANN zur Netzzustandsschätzung brauchte“, erklärt Kelker. Im realen Niederspannungsnetz würde das ANN beispielsweise in den Ortsnetzstationen, bekannt als „Trafohäuschen“, platziert werden.

Die Einstellung der zweiten KI war eine besondere Herausforderung. Sie würde beispielsweise in einer Ladesäule integriert sein und aus den von der ersten KI gelieferten Eingangsdaten erkennen, ob sie die Ladeleistung erhöhen oder reduzieren soll. „Der entsprechende Algorithmus ist so komplex, dass man nur mit sinnvollem ‚Trial and Error‘ herausfinden kann, welche Parameter man zur Optimierung wie verändern muss“, erklärt Michael Kelker. Als Methode hat er auf das Reinforcement Learnings gesetzt. Das bedeutet bestärkendes Lernen. Hierbei ist die KI in einem sogenannten Agenten implementiert, der durch Interaktion mit der Umwelt lernt, ein Problem immer besser zu lösen. „Ähnlich wie bei einer KI mit Reinforcement Learning, die trainiert wird, das Videospiel Super Mario zu spielen“, erläutert Kelker. Als Umgebung dient das zu spielende Level mit den typischen Interaktionen der Spielfigur wie Springen und Laufen. Die Hauptfigur lernt nach mehreren Fehlversuchen, was sie tun muss, um das Level zu schaffen. „In meinem Ansatz ist die Umwelt dann das elektrische Netz und die Interaktion die Regelung der Ladeleistung der Elektrofahrzeuge.“

Doppelt so schnell bei einem Drittel weniger Belastung

Für Kelker bedeutete das Training vor allem geduldiges Warten: „Etwa eine Woche dauert ein Trainingsdurchgang, so lange braucht der Computer für die Berechnung. Wenn sich dann eine vermeintlich sinnvolle Änderung als Verschlechterung herausstellte, war das schon frustrierend.“ Aber das Warten hat sich gelohnt, das Training war erfolgreich: Um fast ein Drittel konnte Michael Kelker kritische Überlastungen des Netzes mit seiner Methode reduzieren. Und vor allem: „Die Autos können annähernd doppelt so schnell geladen werden wie mit der minimalen Ladeleistung.“ Gute Voraussetzungen also, um den Anteil der Elektrofahrzeuge in Deutschland weiter zu erhöhen.

Weitere Informationen:

https://www.fh-bielefeld.de/presse/pressemitteilungen/gesteuertes-laden-von-e-au… Pressemitteilung auf www.fh-bielefeld.de

Media Contact

Dr. Lars Kruse Ressort Hochschulkommunikation
Fachhochschule Bielefeld

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kompaktes LCOS-Mikrodisplay mit schneller CMOS-Backplane

…zur Hochgeschwindigkeits-Lichtmodulation. Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben in Zusammenarbeit mit der HOLOEYE Photonics AG ein kompaktes LCOS-Mikrodisplay mit hohen Bildwiederholraten entwickelt, das eine verbesserte optische Modulation ermöglicht….

Neue Perspektiven für die Materialerkennung

SFB MARIE geht in 3. Förderperiode: Großer Erfolg für die Terahertz-Forschung: Wissenschaftler:innen der Universität Duisburg-Essen und der Ruhr-Universität Bochum erforschen die mobile Materialerkennung seit 2016 im Sonderforschungsbereich/Transregio MARIE. Mit 14,8…

Fahrradhelme aus PLA: Sportartikel mit minimiertem CO2-Fußabdruck

Design, Lifestyle und Funktionalität sind zentrale Kaufkriterien bei Sportartikeln und Accessoires. Für diesen boomenden Markt werden viele Produkte aus Asien nach Europa eingeführt, die nicht ökologisch nachhaltig sind. Forschende des…