Grüner Wasserstoff: ‚Künstliches Blatt‘ wird unter Druck besser
Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
Manche bezeichnen photoelektrochemische Zellen (PEC-Zellen) auch als „künstliches Blatt“ – denn ähnlich wie bei der Photosynthese in grünen Blättern und Algen, wo ein komplexes Molekül (Photosystem II) das Sonnenlicht nutzt, um Wasser aufzuspalten, erfüllen in PEC-Zellen anorganische, eigens entwickelte Photoelektroden diese Aufgabe.
Die kombinierten Energieverluste wurden bis zu einem Druck von 20 bar des PEC-erzeugten Wasserstoffs ausgewertet. Die Effizienzverluste sind bei einem Druck von 6-8 bar am geringsten, insbesondere die optischen und thermodynamischen Verluste. Zu diesem Ergebnis kam das Team durch die Kombination von experimentellen Daten mit einem physikalischen Modell. © HZB/Nature Communications 2024
PEC-Zellen sind inzwischen beeindruckend effizient: Die leistungsstärksten PEC-Zellen erreichen bereits Wirkungsgrade von bis zu 19 Prozent. Bei solch hohen Wirkungsgraden spielen die Verluste durch Blasenbildung eine wichtige Rolle: Blasen streuen das Licht und verhindern eine optimale Ausleuchtung der Elektrode. Außerdem können Blasen den Kontakt des Elektrolyten mit der Elektrodenoberfläche verhindern und so zu einer elektrochemischen Deaktivierung führen. Um diese Verluste zu minimieren, wäre es hilfreich, die Blasengröße zu verringern, indem die Anlage bei höherem Druck betrieben wird. Bislang wurden jedoch alle PEC-Anlagen bei atmosphärischem Druck (1 bar) betrieben.
Ein Team des Instituts für Solare Brennstoffe am HZB hat nun die Wasserspaltung bei erhöhtem Druck unter PEC-relevanten Bedingungen untersucht. Sie setzten PEC-Durchflusszellen auf einen Druck zwischen 1 und 10 bar und zeichneten verschiedene Parameter während der Elektrolyse auf.
Zusätzlich entwickelten sie ein multiphysikalisches Modell des PEC-Prozesses und glichen es mit den experimentellen Daten bei normalem und erhöhtem Druck ab. Dieses Modell ermöglicht es nun, mit den Parametern zu spielen und die entscheidenden Hebel zu identifizieren. „Wir haben zum Beispiel untersucht, wie sich der Betriebsdruck auf die Größe der Gasblasen und ihr Verhalten an den Elektroden auswirkt“, sagt Dr. Feng Liang, Erstautor der Arbeit, die nun in Nature Communications erschienen ist.
Die Analyse zeigt, dass eine Erhöhung des Betriebsdrucks auf 8 bar den Gesamtenergieverlust halbiert. Dies könnte den Gesamtwirkungsgrad deutlich steigern. „Die optischen Streuverluste können bei diesem Druck fast vollständig vermieden werden“, erklärt Liang. „Wir konnten auch eine deutliche Verringerung der Produktübergänge feststellen, insbesondere des Sauerstofftransfers auf die Gegenelektrode“.
Bei höheren Drücken gibt es jedoch keinen Vorteil, so dass das Team 6-8 bar als optimalen Betriebsdruckbereich für PEC-Elektrolyseure vorschlägt. „Diese Erkenntnisse, insbesondere das Multiphysik-Modell, lassen sich auf andere Systeme übertragen und werden uns helfen, die Effizienz von elektrochemischen und photokatalytischen Anlagen zu erhöhen“, sagt Prof. Dr. Roel van de Krol, der das Institut für Solare Brennstoffe am HZB leitet.
Hinweis: Die Arbeiten wurden durch das Helmholtz-Innopool-Projekt „Solar H2: Highly Pure and Compressed“ gefördert.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Roel van de Krol
roel.vandekrol@helmholtz-berlin.de
Originalpublikation:
Nature Communications (2024): Assessing elevated pressure impact on photoelectrochemical water splitting via multiphysics modeling
Feng Liang, Roel van de Krol, & Fatwa F. Abdi
DOI: 10.1038/s41467-024-49273-2
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=27566&sprache=de&seitenid=1
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…