Intelligente Batteriezellproduktion
Schnell und kostengünstig, zugleich aber wandlungsfähig und mit hoher Produktqualität: Das sind die Anforderungen an die künftige Produktion von Batteriezellen. Das Batterie-Kompetenzcluster Intelligente Batteriezellproduktion (InZePro) wird vom Karlsruher Institut für Technologie (KIT) koordiniert. Es zielt darauf ab, Produktionssysteme ganzheitlich zu optimieren und sie flexibler hinsichtlich Menge, Format, Material und eingesetzter Technologie zu machen. Gelingen kann dies etwa durch prozessübergreifende, datengetriebene Optimierungsansätze sowie Industrie 4.0-Lösungen.
Batteriezellen müssen am Standort Deutschland künftig in Klein-, Mittel- und Großserie für verschiedenste Anwendungen und Märkte wirtschaftlich herstellbar sein, um den aktuellen Anforderungen gerecht zu werden. Zudem gilt es, innovative Ansätze zu entwickeln, um die Produktivität zu steigern und zugleich die Produktionskosten zu senken. Hier setzt das vom Bundesministerium für Bildung und Forschung (BMBF) mit insgesamt rund 44 Millionen Euro geförderte Kompetenzcluster zur Intelligenten Batteriezellproduktion (InZePro) an.
Die an InZePro beteiligten Forschungsprojekte haben erste Ergebnisse erarbeitet. Die Schwerpunkte lagen dabei auf agiler Anlagentechnik, auf der Digitalisierung einzelner Produktionsschritte und des gesamten Produktionssystems sowie auf virtuellen Produktionssystemen und KI in der Produktion.
Leitfaden für Digitalisierung und Industrie 4.0
Als Handreichung zur Digitalisierung in der Batteriezellfertigung wurden Werkzeugkästen zu den Themengebieten Maschinen- und Anlagentechnik, Prozesstechnik, Planung, Steuerung und Logistik sowie Qualitätsmanagement erstellt. Diese sollen die bereits vorhandenen technischen und organisatorischen Ansätze von Industrie 4.0 in der Batteriezellfertigung bewerten und weiterentwickeln. Ziel ist es, die systematische Umsetzung von Digitalisierung und Industrie 4.0 in der Batteriezellfertigung zu beschleunigen: Unternehmen sollen damit künftig die Wettbewerbsfähigkeit ihrer Batteriezellproduktion schnell und effizient steigern. Zum Abschluss des Projekts sollen die Ergebnisse in einem Leitfaden zusammengefasst und veröffentlicht werden.
Digitaler Zwilling und Maschinelles Lernen
Zudem wurde beispielsweise gezeigt, dass sich mit einem digitalen Zwilling verschiedene Zukunftsszenarien und deren Auswirkungen auf ein flexibles Batterieproduktionssystem untersuchen und bewerten lassen. Der digitale Zwilling kann hierbei als eine Art betriebsbegleitende Simulation zur Planung und Steuerung verstanden werden.
Auch ein Tracking- und Tracing-Konzept mit verschiedenen Markierungstechnologien von Elektroden wurde erarbeitet. Es trägt dazu bei, dass die Batteriebestandteile über die ganze Prozesskette hinweg zurückverfolgt werden können. Darüber hinaus wurden Ansätze zur Datenstrukturierung und zum Maschinellen Lernen in verschiedenen Projekten entwickelt. Beispielsweise werden Anlagen so ausgestattet, dass sie Abläufe und Muster im Produktionsprozess erkennen und auf Fehler eigenständig reagieren können.
Qualitätssicherung
Die Ergebnisse werden von einem Managementkreis begutachtet, der die Projekte begleitet und die enge Zusammenarbeit von Forschung und Industrie gewährleistet. „Durch die aktive Zusammenarbeit in den Projekten decken wir sämtliche Prozessschritte der Lithium-Ionen-Batteriezellproduktion ab. So wollen wir dafür sorgen, dass produzierende Unternehmen, etwa in der Automobilindustrie, ihre Produktivität auch bei schwankender Auftragslage und hoher Produktvarianz steigern, zugleich die Kosten reduzieren und die Produktqualität erhöhen können“, sagt Professor Jürgen Fleischer, Leiter des wbk Instituts für Produktionstechnik am KIT und Vorsitzender des Clusters InZePro.
Im Kompetenzcluster InZePro arbeiten etwa 200 Wissenschaftlerinnen und Wissenschaftler aus 28 deutschen Forschungseinrichtungen. Beteiligt sind vier Institute des KIT, vier Institute der TU Braunschweig, drei Institute der RWTH Aachen, zwei Institute der TU München, die Universität Bayreuth, die Hochschule Landshut, die TH Aschaffenburg, das Helmholtz-Institut Ulm, das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden Württemberg und zehn Institute der Fraunhofer Gesellschaft. Das Cluster wird noch bis 2023 gefördert. (kla)
Kontakt für diese Presseinformation:
Melanie Klagmann, Öffentlichkeitsarbeit am wbk Institut für Produktionstechnik, Mobil: +49 1523 950 2612, E-Mail: melanie.klagmann@kit.edu
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 600 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 23 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.
Weitere Informationen:
https://www.bmbf.de/bmbf/de/forschung/energiewende-und-nachhaltiges-wirtschaften…
https://www.kit.edu/kit/pi_2021_018_agile-produktion-mehr-als-14-millionen-euro-…
http://www.wbk.kit.edu (Details zum wbk Institut für Produktionstechnik am KIT)
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Wegweisend für die Diagnostik
Forschende der Universität Jena entwickeln Biosensor auf Graphen-Basis. Zweidimensionale Materialien wie Graphen sind nicht nur ultradünn, sondern auch äußerst empfindlich. Forschende versuchen deshalb seit Jahren, hochsensible Biosensoren zu entwickeln, die…
Rotorblätter wiederverwenden
h_da-Team als „Kultur- und Kreativpilot*innen Deutschland“ ausgezeichnet. Rotorblätter von Windkraftanlagen wiederverwenden statt zu entsorgen: Das „Creative Lab rethink*rotor“ am Fachbereich Architektur der Hochschule Darmstadt (h_da) zeigt, dass sich hieraus Schallschutzwände…
Weltweit erstes Zentrum für Solarbatterien
Strategische Partnerschaft zur Optoionik von TUM und Max-Planck-Gesellschaft. Energie von Sonnenlicht direkt elektrochemisch speichern Optoionik als Querschnittswissenschaft zwischen Optoelektronik und Festkörperionik Bayern als internationaler als Innovationsführer bei solarer Energiespeicherung Das…