„Intelligente“ Turbinen für grüne Energie aus Gezeiten-Wasserkraft
Strömungstechniker und Elektroingenieure entwickeln gemeinsam Turbinenschaufeln mit integrierten Spezialantrieben
Durch den Einsatz optimierter Turbinen können künftig umweltfreundliche Gezeiten-Wasserkraftwerke wesentlich effizienter „grünen“ Strom erzeugen. Ingenieure der Otto-von-Guericke-Universität Magdeburg entwickeln dafür Schaufelblätter mit eingebauten Motoren. Die integrierten Antriebe sorgen dafür, dass sich die Turbinenschaufeln während jeder Umdrehung optimal an die Wasserströmung anpassen und verhindern so einen gefährlichen Strömungsabriss.
Dieser Begriff beschreibt die Ablösung der Strömung von der Oberfläche von Turbinenschaufeln, Flugzeugflügeln oder Rotorblättern. Die Folge ist, dass die Auftriebskräfte, die die Turbine antreiben bzw. das Flugzeug in der Luft halten, plötzlich zusammenbrechen, während der Widerstand schlagartig stark ansteigt. Die dabei auftretenden Kräfte führen zu einem Effizienzverlust und über längere Zeit zu Materialversagen und Ermüdungsbrüchen der Turbinenrotoren.
„Bisher müssen diese Belastungen durch stabilere Bauteile, verbunden mit einem höheren Materialeinsatz bzw. Hochleistungsmaterialien, kompensiert werden“, so der Strömungsmechaniker Dr. Stefan Hoerner vom Institut für Strömungstechnik und Thermodynamik. „Beides ist wirtschaftlich und ökologisch gesehen ziemlich teuer. Mit der neuen Technologie soll es möglich werden, die Strömung um die Schaufeln aktiv zu kontrollieren und die Turbinen dadurch leichter, langlebiger und damit effizienter zu gestalten.“
Die integrierten Motoren können durch die Bewegung der Schaufeln die Strömung so beeinflussen und optimieren, dass sie bei minimaler Belastung maximale Effizienz erreichen. „Dadurch steigt die elektrische Leistung und die Struktur kann gleichzeitig feingliedriger gestaltet werden. Das wiederum hilft, Material einzusparen und die Lebensdauer der Turbinen nachhaltiger Gezeiten- oder Flusskraftwerke zu erhöhen.“
Im interdisziplinären Team von Dr. Stefan Hoerner und Prof. Dr. Roberto Leidhold vom Institut für Elektrische Energiesysteme der Fakultät für Elektrotechnik und Informationstechnik der Universität werden die speziell entwickelten Motoren konzipiert und in die Schaufeln der Turbine integriert. „Sie sind dann Teil des Flügels selbst“, so Hoerner.
„Das ist strömungsmechanisch sinnvoll, da sie keinen zusätzlichen Widerstand erzeugen. In dem Modell, das wir in unserem Strömungskanal untersuchen werden, wird es eine zusätzliche Herausforderung sein, die Motoren sehr klein und dennoch stark genug zu gestalten. Die Flügel sind an der dicksten Stelle nur etwas dicker als ein Zentimeter.“ Deshalb werden das Design und die Festigkeit des gewichtsreduzierten Turbinenmodells mit Computersimulationen überprüft, bevor dann der Praxistest im Wasserkanal erfolgt.
„Wenn wir diese technischen Probleme, also den Strömungsabriss kontrollieren können und die Effizienz und Lebensdauer der Turbinen signifikant steigern können, erwarten wir starke Impulse für eine breite industrielle Anwendung der Technik in der Zukunftsbranche der Gezeitenenergie“, erläutert Hoerner. „Die Ökosysteme der Meeresküsten und der Flüsse werden bereits sehr stark vom Menschen genutzt. Deshalb muss jeder weitere Quadratmeter, der zugebaut wird, so gut wie möglich und gleichzeitig nachhaltig eingesetzt werden. Das würde helfen, den Klimawandel zu bekämpfen und eine bisher nur sehr wenig genutzte Ressource erneuerbarer Energie, die Wasserkraft, nachhaltig zu nutzen.“
Konventionelle Wasserkraft sei bisher leider oft nicht wirklich nachhaltig, so der Strömungstechniker weiter, da sie aufgrund von Dammsystemen einen erheblichen Eingriff in die Natur bedeute und damit ein großes ökologisches und soziales Schädigungspotenzial, wie Verlust von Biodiversität, Fischschädigungen, Störung des Sedimenttransports oder Landverlust, einhergeht, beschreibt Hoerner das Problem. „Wir arbeiten deshalb an unkonventioneller Technik, die eher wie eine Windturbine funktioniert und daher deutlich nachhaltiger ist.“
Innerhalb der nächsten drei Jahre soll ein Demonstrator dieser unkonventionellen Turbine vorliegen und getestet sein. Die Deutsche Forschungsgemeinschaft DFG fördert das Forschungsprojekt unter dem Titel „Leistungssteigerung und Verbesserung der Dauerfestigkeit von Vertikalachsigen Wasserturbinen durch aktive Schaufeljustierung“ mit fast 700.000 Euro.
Wissenschaftliche Ansprechpartner:
Dr. Stefan Hoerner, Institut für Thermodynamik und Strömungsmechanik, Fakultät für Verfahrens- und Systemtechnik, Otto-von-Guericke-Universität Magdeburg, Tel.: +49 391 67-52876, E-Mail: hoerner@ovgu.de
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Globale Studie identifiziert Gene für Depressionen in verschiedenen Ethnien
Neue genetische Risikofaktoren für Depression wurden erstmals in allen großen Weltbevölkerungen identifiziert und ermöglichen es Wissenschaftler*innen, das Risiko für Depression unabhängig von der ethnischen Zugehörigkeit vorherzusagen. Die bislang größte und…
Zurück zu den Grundlagen: Gesunder Lebensstil reduziert chronische Rückenschmerzen
Rückenschmerzen im unteren Rückenbereich sind weltweit eine der Hauptursachen für Behinderungen, wobei viele Behandlungen wie Medikamente oft keine dauerhafte Linderung bieten. Forscher des Centre for Rural Health der Universität Sydney…
Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut
Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…