Kostengünstiges 245 GHz Gasspektroskopie-System mit integrierten SiGe-Chips entwickelt

Laboraufbau des Systems mit Sender- und Empfängermodul und der Gasabsorptionszelle

Dieses Sensorsystem verwendet erstmalig einen integrierten Silizium (Si)-Germanium(Ge)-Sender sowie einen integrierten SiGe-Empfänger. In der neuesten Ausgabe der renommierten Electronics Letters werden diese beiden 245 GHz SiGe-Chips und das dazugehörige Sensorsystem beschrieben und hochauflösende spektroskopische Messungen für Methanol präsentiert.

Sender und Empfänger wurden in der siliziumbasierten Höchstfrequenz-Technologie des IHP kostengünstig hergestellt. In der neuesten Ausgabe der renommierten Electronics Letters werden diese beiden 245 GHz SiGe-Chips und das dazugehörige Sensorsystem beschrieben und hochauflösende spektroskopische Messungen für Methanol präsentiert.

Ein derartiges kostengünstiges Sensorsystem aus 245 GHz Gasspektroskopie-Systemen mit integrierten SiGe-Chips hat ein großes Anwendungspotential, z.B. im Sicherheitsbereich für den Nachweis toxischer Gase, aber auch für die Kontrolle chemischer Prozesse, wie z.B. des Plasmaätzens in der Halbleitertechnologie. Eine weitere potentielle Anwendung liegt im Einsatz im Gesundheitsbereich. Hier können durch die Durchführung einer Atemluftanalyse von Patienten, Lungenkrankheiten frühzeitig diagnostiziert werden.

Die Millimeterwellen-Absorptionsspektroskopie ist eine bekannte Labortechnik, die in der Labor-Molekülspektroskopie und in der Radioastronomie eingesetzt wird, um die Konzentration eines Moleküls absolut zu bestimmen. Auf Grund der bisherigen Strahlungsquellen als auch der Größe der Detektoren waren die Geräte unhandlich und sehr teuer. Seit einigen Jahren gibt es allerdings kommerzielle Strahlungsquellen, die auf der Vervielfachung von Mikrowellenfrequenzen basieren. Diese Systeme sind zwar kompakt, aber aufgrund ihrer aufwendigen Herstellung immer noch teuer.

Unlängst wurde von einer Forschergruppe aus den USA ein Gasspektroskopie-Sensorsystem für den Bereich von 210 GHz bis 270 GHz vorgestellt, das aus kommerziell verfügbaren mm-Wellen Komponenten aufgebaut ist. Die Kosten für ein derartiges System werden gegenwärtig durch die hohen Herstellungskosten für die mm-Wellen Komponenten dominiert. Die Herausforderung bestand deshalb darin, ein wesentlich preisgünstigeres Sensorsystem auf Basis einer integrierten Halbleitertechnologie wie der SiGe- oder CMOS-Technologie zu entwickeln.

Am IHP ist es gelungen, Prototypen eines Transmitters und Empfänger mit integrierter Antenne in SiGe-Technologie zu entwickeln, die im Frequenzbereich von 238 GHz bis 252 GHz arbeiten. Da in Si-Technologie ausgeführt, sind diese Komponenten mit in der Halbleiterindustrie etablierten Herstellungsverfahren kompatibel und können preiswert hergestellt werden. Damit wurde die technologische Basis für einen preiswerten Gas-Sensor geschaffen.

Inzwischen wurde am IHP in Zusammenarbeit mit dem DLR, Berlin ein Gasspektroskopie-System realisiert, welches einen 245 GHz SiGe-Sender- und einen Empfänger-Chip verwendet. Die Leistungsfähigkeit des Sensorsystems wurde anhand des gemessenen Absorptionsspektrums für Methanol nachgewiesen.

Der Demonstrator verwendet eine optische Bank, auf der das Sender- und Empfängermodul montiert wurden. Der effektive Antennengewinn für den Sender bzw. Empfänger wird durch eine Linse erhöht. Für die gasspektroskopischen Messungen wurde eine 0,6 m lange Gasabsorptionszelle zwischen das Sender- und das Empfängermodul gestellt. Das Zwischenfrequenzsignal des Empfängers wurde dann in Abhängigkeit von der Frequenz des Senders mittels kommerzieller Labormesstechnik aufgezeichnet.

Ein integrierter Lokaloszillator wurde sowohl für den Sender als auch für den Empfänger verwendet, wobei seine Frequenz mittels eines externen PLL (Phasenregelschleife)-Bausteins stabilisiert wurde. Die beiden PLL-Bausteine verwenden hierbei zwei Referenzfrequenzen mit konstantem Frequenzversatz, um für den Empfänger eine konstante Zwischenfrequenz während eines Frequenzdurchlaufes zu erreichen. Eine geringe Amplitudenänderung des Empfängersignals infolge von Gasabsorption kann so detektiert und in Abhängigkeit von der Senderfrequenz für die Gasspektroskopie abgespeichert werden.

Source: Electronics Letters, Volume 50, Issue 12, 05 June 2014, p. 881 – 882
DOI: 10.1049/el.2014.0625 , Print ISSN 0013-5194, Online ISSN 1350-911X

http://www.ihp-microelectronics.com

Media Contact

Heidrun Förster Leibniz-Institut für innovative Mikroelektronik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…