Magnetischer Kohlenstoff mit winzigen Mustern

Pyrolytischer magnetischer Kohlenstoff (PMC): Das Modell zeigt die für die magnetischen Eigenschaften verantwortlichen ungepaarten Elektronenspins (rot). Abbildung: Swati Sharma

Reiner Kohlenstoff ist normalerweise nicht magnetisch. Daher konzentrierte sich die Nanotechnologie beim Einsatz von Kohlenstoff bisher auf dessen Fähigkeit zum Elektronentransport. Kohlenstoff mit magnetischen Eigenschaften wurde zwar bereits vereinzelt hergestellt, jedoch ohne die Produktion auf die Mikro- und Nanoskala zu übertragen.

Forschern um Professor Jan G. Korvink am Institut für Mikrostrukturtechnik (IMT) des KIT ist es zusammen mit Wissenschaftlern um Professor Stefan Weber am Institut für Physikalische Chemie der Universität Freiburg nun erstmals gelungen, mikro- und nanostrukturierten magnetischen Kohlenstoff herzustellen.

Der von ihnen gefertigte pyrolytische magnetische Kohlenstoff (PMC) ist kostengünstig, bleibt anders als die meisten magnetischen Materialien auch bei extrem hohen Temperaturen stabil, erfordert keine speziellen Lagerungsbedingungen, lässt sich bei Raumtemperatur nutzen und ist mit den meisten skalierbaren lithographischen Techniken kompatibel.

Wie die Forscher im Journal of Applied Physics berichten, verwendeten sie als Ausgangsstoff Polymere, wie sie gemeinhin bei der Fertigung von Mikroelektromechanischen Systemen (MEMS) eingesetzt werden. MEMS sind winzige Bauteile, die elektrische und mechanische Informationen verarbeiten, unter anderem in der Mess- und Sicherheitstechnik, Medizin- und Automobiltechnik.

Die verwendeten Polymere lassen sich durch verschiedene Verfahren mit Mikro- und Nanostrukturen versehen; die Karlsruher und Freiburger Wissenschaftler bedienten sich dazu der Photolithographie und der Zwei-Photonen-Lithographie. Bei Ersterer werden die in einer Maske gespeicherten Informationen durch fotografische Abbildung in eine strahlungsempfindliche Schicht übertragen. Bei Letzterer wird flüssiges Harz durch fokussierte Laserstrahlen ausgehärtet und werden so in hohem Tempo winzige dreidimensionale Strukturen geschaffen.

Die Wissenschaftler unterzogen die strukturierten Polymere einer Pyrolyse, wobei die Temperatur bei nur etwa 600 Grad Celsius lag, was für eine ganze Reihe von MEMS-Materialien verträglich ist. So wandelten sie die Polymere in Kohlenstoff um. „Dieser pyrolytische magnetische Kohlenstoff, kurz PMC, unterscheidet sich grundlegend von glasartigem Kohlenstoff, der klassischen Form des pyrolytischen Kohlenstoffs. PMC besitzt intrinsische magnetische Eigenschaften, weil er während der Pyrolyse seine Mikrostruktur verändert und ungepaarte Elektronenspins aufgebaut hat“, erklärt Dr. Swati Sharma vom IMT des KIT, korrespondierende Autorin der Publikation. „Je mehr ungepaarte Elektronenspins vorliegen, desto stärker sind die magnetischen Eigenschaften.“

Der nach dem dargestellten Verfahren hergestellte pyrolytische magnetische Kohlenstoff (PMC) ist dank seiner Stabilität und der günstigen Herstellungskosten für viele Anwendungen attraktiv, wie für die nächste Generation der Mikroelektromechanischen Systeme (MEMS) und die weiter miniaturisierten Nanoelektromechanischen Systeme (NEMS), für Magnetresonanzspektroskopie und weitere bildgebende Techniken sowie die Herstellung von magnetischen Kompositen. Darüber hinaus ist PMC interessant für die grundlegende Erforschung magnetischer Phänomene in Kohlenstoff.

Die Herstellung von PMC ist das Ergebnis fachübergreifender Zusammenarbeit: Neben Dr. Swati Sharma, die sich schwerpunktmäßig mit kohlenstoffbasierten MEMS befasst, waren der Physiker Dr. Lorenzo Bordonali und der Chemiker Dr. Neil McKinnon aus der Gruppe von Professor Jan G. Korvink, Experte für Magnetresonanztechnologie, am KIT sowie der Materialwissenschaftler Arpad M. Rostas aus der Gruppe von Professor Stefan Weber an der Universität Freiburg daran beteiligt. Finanziert wurde die Arbeit im Rahmen des EU-Projekts NMCEL unter der Leitung von Professor Jan G. Korvink.

Swati Sharma, Arpad M. Rostas, Lorenzo Bordonali, Neil MacKinnon, Stefan Weber, and Jan G. Korvink: Micro and nano patternable magnetic carbon. Journal of Applied Physics, 2016. DOI: 10.1063/1.4972476

Weiterer Kontakt:

Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Weitere Informationen:

http://www.kit.edu

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

3D-Tumormodell für Retinoblastomforschung mit Fokus auf Tumor-Umgebungs-Interaktionen.

Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut

Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…

Private Brunnen als Notwasserversorgung zur Stärkung der Katastrophenresilienz.

Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half

Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…

DNA Origami-Strukturen steuern biologische Membranen für gezielte Medikamentenabgabe

Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können

Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…