Makroskopische elektrische Polarisationen und Elektronen auf atomarer Skala
Röntgenexperimente im Femtosekunden-Bereich und ein neuer theoretischer Ansatz stellen eine direkte Verbindung zwischen elektrischen Eigenschaften makroskopischer Systeme und Elektronenbewegungen auf atomaren Längen- und Zeitskalen her. Die Ergebnisse eröffnen neue Wege zu Verständnis und Optimierung ferroelektrischer Materialien.
Vorgänge in der makroskopischen Welt werden durch die klassische Physik beschrieben, während Prozesse auf atomaren Längen- und Zeitskalen den Gesetzen der Quantenmechanik unterliegen. Der Zusammenhang zwischen mikroskopischen und makroskopischen physikalischen Größen ist nicht trivial und teilweise unverstanden.
Die elektrische Polarisation ist eine makroskopische Größe, die das Dipolmoment von Materie beschreibt. Polarisationen werden durch die Verteilung elektrischer Ladungen auf atomarer Skala in polaren und ionischen Materialien hervorgerufen, darunter die besonders interessante Gruppe der Ferroelektrika.
Deren spontane elektrische Polarisation findet Anwendung in elektronischen Sensoren, Speichern und Schaltelementen. Der Zusammenhang zwischen Polarisationen, vor allem zeitabhängigen, und mikroskopischen Elektronenverteilungen ist von großer Bedeutung für das Verständnis und die gezielte Veränderung der ferroelektrischen Eigenschaften.
Auf der Grundlage eines neuen experimentellen und theoretischen Ansatzes haben Wissenschaftler des Max-Born-Instituts jetzt eine direkte quantitative Verbindung zwischen makroskopischen Polarisationen und zeitabhängigen mikroskopischen Elektronendichten hergestellt. Wie sie in der Zeitschrift Physical Review B berichten, löst in den Experimenten eine optische Anregung atomare Bewegungen aus, welche die Elektronenverteilung im Femtosekunden-Zeitbereich modulieren (1 fs = 10 hoch -15 Sekunden).
Die Elektronendynamik wird durch zeitaufgelöste Röntgen-Pulverbeugung aufgezeichnet. Aus den Daten werden räumlich und zeitlich aufgelöste „Landkarten“ der Elektronendichte abgeleitet, die mit Hilfe eines neuen theoretischen Konzepts eine Bestimmung der momentanen makroskopischen Polarisation gestatten. Die Methode wurde anhand von zwei prototypischen Ferroelektrika demonstriert.
Die theoretische Methode zur Beschreibung der ultraschnellen Dynamik von Ladung und Polarisation beruht auf einer Erweiterung von Ansätzen, die durch eine Betrachtung von Quantenphasen (Berry-Phase) stationäre makroskopische Polarisationen liefern. Wesentliche Schritte bestehen in der Berechnung mikroskopischer Stromdichten aus den zeitabhängigen Ladungsdichtekarten, wobei die kinetische Energie der Elektronen minimiert wird.
Aus diesen so bestimmten mikroskopischen Stromdichten wird dann die makroskopische Polarisation bestimmt. Dieses Verfahren wird auf das Ferroelektrikum Ammoniumsulfat [(NH4)2SO4, Fig. 1] angewendet, die zeitabhängigen Ladungs- und Stromdichten sind in dem beigefügten Film gezeigt.
Als zweites prototypisches System wurde KDP [KH2PO4] untersucht. Die Analyse liefert die Absolutwerte der makroskopischen Polarisationsänderungen, die durch mikroskopische Schwingungen moduliert werden.
Die Ergebnisse etablieren die Röntgenbeugung im Ultrakurzzeitbereich als ideales Werkzeug zur Erfassung makroskopischer elektrischer Eigenschaften komplexer Materialien. Die besondere Bedeutung dieser neuen Erkenntnisse wird durch die Würdigung der Publikation als „Editor's Suggestion“ unterstrichen.
Bildunterschriften:
Abb. 1: Oben: Kristallgitter des ferroelektrischen Ammoniumsulfats [(NH4)2SO4] mit verkippten Ammonium-Tetraedern (NH4+, Stickstoff blau, Wasserstoff weiß) und Sulfat-Tetraedern (SO42-, Schwefel gelb, Sauerstoff rot). Der grüne Pfeil zeigt die Richtung der makroskopischen Polarisation P an. Blaue Pfeile: Lokale Dipole zwischen Schwefel- und Sauerstoffatomen. Die Elektronendichtekarten unten links und im beigefügten Film wurden in der grau markierten Ebene aufgenommen. Die Karte unten links zeigt die stationäre Elektronenverteilung mit einer hohen Dichte im Schwefel- und einer geringeren Dichte in den Sauerstoffatomen. Unten rechts sind die Änderungen der lokalen Dipole zu einem Zeitpunkt von 2.8 ps nach der Anregung der Probe gezeigt (rote Pfeile, blaue Pfeile: stationärer Wert). Eine anisotrope Ladunsgverschiebung reduziert den nach rechts zeigenden Dipol und vergrößert die drei anderen.
Movie
Links: Zeitanhängige Elektronendichte des Sulfations für Zeiten zwischen 2.7 und 5.1 ps nach der Anregung. Die Amplitude der gezeigten Dichteänderungen ist im Vergleich zum Experiment um einen Faktor 100 erhöht. Rechts: Zeitabhängige Stromdichte entlang der a-Achse des Kristalls, berechnet aus den transienten Elektronendichten. Die Stromdichte oszilliert mit einer Phasenverschiebung von 90 Grad relativ zur Elektronendichte.
Movie unter https://www.mbi-berlin.de/de/current/index.html#2018_08_27
Dr. Christoph Hauf, E-Mail hauf@mbi-berlin.de, Tel. 030 6392 1473
Dr. Michael Wörner, E-Mail woerner@mbi-berlin.de, Tel. 030 6392 1470
Prof. Dr. Thomas Elsaesser, E-Mail elsasser@mbi-berlin.de, Tel. 030 6392 1400
Christoph Hauf, Michael Woerner, and Thomas Elsaesser
Macroscopic electric polarization and microscopic electron dynamics: Quantitative insight from femtosecond x-ray diffraction
Phys.Rev. B 98, 054306 (2018, Editor's Suggestion).
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut
Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…
Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half
Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…
Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können
Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…