Neue Kooperation mit China zum Wasserstoffantrieb
Globale Fertigungsketten in der Industrie sind nichts Ungewöhnliches: Automobilhersteller produzieren Fahrzeuge aus vorgefertigten Teilsystemen, die oft an ganz unterschiedlichen Standorten weltweit hergestellt werden. Die Entwicklungsarbeit erfolgt dagegen in der Regel an einem Standort. Traditionell wird ein Fahrzeug nach den Vorstellungen eines Herstellers gemäß den jeweils spezifischen Ansprüchen und regulatorischen Vorgaben in den jeweiligen Zielmärkten entwickelt.
„In unserer globalisierten Welt ist das ein Anachronismus“, sagt Professor Albert Albers, Leiter des IPEK – Institut für Produktentwicklung am KIT. „Die CO2-Problematik etwa geht uns alle etwas an und wir müssen hier globale Lösungen finden, die sich regional anpassen lassen. Wir wollen deshalb mit unserer Forschung bereits bei der Entwicklung mehr Flexibilität und internationalen Austausch ermöglichen.“
Um dieses Ziel zu erreichen, wird das IPEK – Institut für Produktentwicklung in Kooperation mit dem Clean Energy Automotive Engineering Centre (CEAEC) an der Tongji Universität Shanghai in China nun Validierungsmethoden und -umgebungen entwickeln, die auch über die Distanz funktionieren.
In dem auf deutscher Seite vom Bundesministerium für Bildung und Forschung (BMBF) und auf chinesischer Seite von der chinesischen Regierung geförderten Forschungsprojekt MovE2China (Methoden zur verteilten Entwicklung von H2-Brennstoffzellen-Fahrzeugen in Kooperation mit China) beschäftigen sich die beiden Universitäten mit dem elektrischen Antriebssystem von Brennstoffzellenfahrzeugen, dessen Validierungsprozess beispielhaft auf die beiden Standorte verteilt wird. Die räumliche Trennung der Entwickler macht den Einsatz neuester Technologien und schneller Datenverbindungen notwendig.
„An welchem Ort sich die Personen in unserem gemeinsamen Team und die jeweiligen Komponenten tatsächlich befinden, ist damit nicht mehr relevant“, erklärt Dr. Matthias Behrendt, der das Projekt auf deutscher Seite leitet. „Ein Testfahrzeug kann auf unserem Rollenprüfstand am KIT stehen während der Fahrer in China sitzt.“ Basis ist der am IPEK entwickelte und im KIT-Zentrum Mobilitätssysteme bereits etablierte IPEK-XiL-Ansatz (X-in-the-Loop) zur Validierung mechatronischer Systeme.
Dabei werden entgegen traditioneller Validierungsmethoden virtuelle und physische Testformen nicht getrennt voneinander eingesetzt. Das heißt, eine Brennstoffzelle kann physisch in einem Labor am KIT stehen und von dort aus zu Messzwecken virtuell in eine Testfahrt in Shanghai eingebunden werden.
Die größte Herausforderung bei einem gemeinsamen Validierungsprozess liege allerdings gar nicht in der physischen Distanz zwischen den Teammitgliedern und Geräten, sagt Albert Albers: „Wir müssen uns in Erinnerung rufen, was Validierung technischer Systeme eigentlich bedeutet. Die Frage lautet dabei ja nicht, ob wir die Technologie richtig entwickelt haben. Vielmehr wollen wir wissen, ob wir die richtige Technologie für die Menschen entwickelt haben.“
Im Fall von China und Deutschland handle es sich um sehr unterschiedlich strukturierte Zielmärkte, mit verschiedenen Anforderungen an die Fahrzeuge. „Wer einmal in Shanghai Auto gefahren ist, der weiß, dass der Autoverkehr dort ganz anders funktioniert.“ Das habe etwa Auswirkungen auf die Konzeption von Assistenzsystemen wie Einparkhilfen, Abstandsregler oder auch das automatisierte Fahren. Die Möglichkeit zur unabhängigen und falls erforderlich auch unterschiedlichen Entwicklung von Teilsystemen werde deshalb ein wichtiger Bestandteil der standardisierten Methoden zur räumlich verteilten Validierung von Fahrzeugen sein.
Deutschland und China verbindet bei dem Forschungsprojekt das Ziel, den Ausbau ressourcenschonender Mobilität zu unterstützen. Zwischen dem KIT und der Tongji-Universität in Shanghai besteht bereits eine strategische Partnerschaft, die viele Bereiche umfasst, beispielsweise die Zusammenarbeit in der Lehre. Professor Albert Albers nimmt dort seit 2007 eine Gastprofessur wahr. Die Tongji-Universität in Shanghai gilt zudem als ein wichtiges Zentrum der Brennstoffzellenforschung in China. Das deutsch-chinesische Forschungsprojekt soll auch dazu beitragen, Normungs- und Standardisierungsaktivitäten auf diesem Gebiet zu initiieren.
Details zum KIT-Zentrum Mobilitätssysteme:
http://www.mobilitaetssysteme.kit.edu
Weiterer Kontakt:
Martin Heidelberger, Redakteur/Pressereferent, Tel.: +49 721 608-21169, E-Mail: martin.heidelberger@kit.edu
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 500 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.
Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php
http://www.mobilitaetssysteme.kit.edu
www.sek.kit.edu/presse.php
martin.heidelberger@kit.edu
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…