Optimierung von Leiterplatten durch KI

Die modularen Plattformen bestehen aus mehreren Modulen, aus Machine Learning, Deep Learning und Künstlicher Intelligenz. © Fraunhofer FIT

Leiterbahnen werden so eng und geschickt wie möglich für eine Anwendung geplant, ohne dadurch einen Ausfall zu riskieren. Basis dafür ist bisher das Erfahrungswissen der beteiligten Ingenieure, deren Designs in Versuchen getestet werden müssen.

Die Ergeb­nisse daraus werden zudem nicht stringent dokumentiert, so dass fehleranfällige De­signs auch mehrmals Tests durchlaufen. Dieser aufwändige Prozess führt zu hohen Kosten.

Bisher hoher Aufwand in der Qualitätskontrolle

Die fertig entwickelten Designs stellen danach hohe Anforderungen an die Produktion. Daher wird jede einzelne Leiterplatte überprüft, zumeist über eine Automatische Opti­sche Inspektion (AOI). Dabei wird über eine Bildanalyse verglichen, ob die Platine so wie geplant produziert wurde, und so technische Fehlstellen detek­tiert. Dieses Verfahren erzeugt momentan allerdings eine hohe True-negativ-Rate, d.h., viele funktionierende Platinen werden als fehlerhaft klassifiziert.

Diese müssen dann alle per Hand kontrolliert werden. Dies geschieht sowohl vi­suell, als auch messtechnisch. Die Überprüfung verursacht wiederum hohe Kosten, denn bei ei­ner zu hohen True-negativ-Rate werden fehlerfrei Bauteile aussortiert. Bei einer zu klei­nen Rate sind die Folgekosten durch den Einsatz von Fehlteilen hoch. Eine optimierte True-negativ-Rate durch menschliche Kontrolle ist schwierig, da auch menschliche Schwä­chen einfließen.

Selbstlernend zum optimalen Auswahlprozess

Wie ein zukünftiger Überprüfungsprozess aussehen kann, zeigt die Entwicklung des Fraunhofer FIT. Eine Kamera macht wie bei einer herkömmlichen AOI Aufnahmen von ge­druckten Leiterplatten. Daraus wird die Entscheidungsqualität von Algorithmen opti­miert. Entscheidend ist dabei die Eingabe qualitativ-hochwertiger Trainingsdaten. Dafür füttern zunächst Experten die Module für Ma­chine Learning und Deep Learning mit einer guten Datenauswahl.

»Diese modulare Bauweise ermöglicht, aneinander gekoppelte Algorithmen einzuset­zen, die sich selbst verbessern. Durch laufende automatisierte Kontrollen der Bauteile fließen Daten zurück in den Algorithmus und sind Grundlage für einen Selbstlernpro­zess im Modul Künstliche Intelligenz«, so Timo Brune, Projektleiter beim Fraunhofer FIT. »Dieses permanente Feedbacksystem verbessert die Datengrundlage und optimiert die True-negativ-Rate. Dadurch können nach ersten Schätzungen aus der Industrie rund 20 Prozent an Produktionsressourcen eingespart werden.«

Das Training der Module kann der Anwender selbst mit seinen Prozess- und Produkti­onsdaten übernehmen. Das Unternehmen bleibt so immer im Besitz seiner Daten, die nicht etwa an ex­terne Server geschickt werden müssen. Der »Baukasten« aus Algorith­men kann in be­liebiger Kombination auf spezifische Probleme angewandt werden.

Intelligente Entwicklung neuer Bauteile

Die trainierten Algorithmen lassen sich dann auch bereits beim Design neuer Leiterplat­ten einsetzen. Die Anordnung von Bauteilen auf der Leiterplatte muss dann nicht mehr im Trial-and-Error-Verfahren kosten- und zeitintensiv erfolgen. Der Algorithmus hilft, aus der Vielzahl möglicher Varianten die mit optimaler Funktionalität vorherzusagen.

Der Ansatz des Fraunhofer FIT, modulare, sich selbst verbessernde Algorithmus-Plattfor­men für Design und Qualitätskontrolle von Leiterplatten einzusetzen, ist auch für viele weitere elektrische Systeme vorteil­haft. Auch dort wer­den Prozesse so optimiert, dass Zeit- und Produktionskosten in sig­nifikanter Weise ein­gespart werden können.


https://www.fraunhofer.de/de/presse/presseinformationen/2020/mai/intelligente-op…


Media Contact

Alexander Deeg Fraunhofer Forschung Kompakt

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…