Tomographie zeigt hohes Potenzial von Kupfersulfid-Feststoffbatterien

3D Rekonstruktion der Bildung eines Kupferkristallits in einem Kupfersulfidpartikel (CuS) während der Entladung einer Lithium-CuS-Feststoffbatterie. Die Volumenausdehnung kann dabei zur Bildung von Rissen (blau) führen.
K. Dong / HZB

Feststoffbatterien ermöglichen noch höhere Energiedichten als Lithium-Ionenbatterien bei hoher Sicherheit.

Einem Team um Prof. Philipp Adelhelm und Dr. Ingo Manke ist es gelungen, eine Feststoffbatterie während des Ladens und Entladens zu beobachten und hochaufgelöste 3D-Bilder zu erstellen. Dabei zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt.

Feststoffbatterien (solid-state batteries, SSBs) gelten als aussichtsreiche Batterietechnologie der Zukunft. Gegenüber den aktuellen Lithiumionenbatterien, die in Mobiltelefonen, Laptops und Elektrofahrzeugen eingesetzt werden, versprechen SSBs noch höhere Energiedichten und vor allem auch eine bessere Sicherheit. Denn die leicht brennbaren, flüssigen Elektrolyte von Lithiumionenbatterien werden hier durch einen Feststoff ersetzt, so dass die gesamte Batterie nur aus „festen Materialien“ besteht. Um eine solche Batterie herzustellen, müssen Anode, Kathode und Elektrolyt unter hohem Druck miteinander verpresst werden.

Einer Gruppe aus den Helmholtz-Zentren Berlin (HZB) und Hereon, der Humboldt-Universität zu Berlin und der Bundesanstalt für Materialforschung und -prüfung ist es nun gelungen, die Prozesse innerhalb einer solchen Feststoffbatterie während des Ladens und Entladens zu beobachten. Die Arbeitsgruppen von Prof. Philipp Adelhelm und Dr. Ingo Manke untersuchten das Verhalten von Kupfersulfid, einem natürlich vorkommenden Mineral, als Kathode in einer Feststoffbatterie. Als Anode wurde Lithium eingesetzt. Eine Besonderheit der Batterie ist, dass sich während der Entladung große Kupferkristallite bilden.

Mit Hilfe von Röntgentomographie ließ sich diese Bildung der Kristallite eingehend untersuchen. So konnte die Entlade- und Ladereaktion in 3D nachvollzogen und zum ersten Mal die Bewegung der Kathodenpartikel innerhalb der Batterie verfolgt werden. Zudem zeigte sich, dass sich Rissbildung durch höheren Druck effektiv verringern lässt. „Für die aufwendigen Messungen mussten wir einige Kompromisse eingehen und viele Referenzexperimente durchführen“ erklären Dr. Zhenggang Zhang und Dr. Kang Dong, die gemeinsamen Erstautoren der Publikation. „Die Ergebnisse geben aber detaillierte Einblicke in das Innenleben einer Feststoffbatterie und zeigen, wie sich deren Eigenschaften verbessern lassen“.

Das Projekt wurde gefördert durch Mittel des Bundesministeriums für Bildung und Forschung (Projekte NASEBER und KAROFEST) und des China Scholarship Council. Am Helmholtz-Zentrum Berlin wird die Erforschung von Feststoffbatterien mittels Tomographie demnächst noch weiter ausgebaut. So fördert das Bundesministerium für Bildung und Forschung den Aufbau eines neuen Tomographielabors (TomoFestBattLab) mit 1,86 Millionen Euro.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Philipp Adelhelm
https://www.helmholtz-berlin.de/pubbin/vkart.pl?v=uqaod
philipp.adelhelm@helmholtz-berlin.de

Originalpublikation:

Advanced Energy Materials (2022):

Phase Transformation and Microstructural Evolution of CuS Electrodes in Solid-State Batteries Probed by in-situ 3D X-ray Tomography

Zhenggang Zhang, Kang Dong, Katherine A. Mazzio, André Hilger, Henning Markötter, Fabian Wilde, Tobias Heinemann, Ingo Manke, Philipp Adelhelm
https://onlinelibrary.wiley.com/doi/10.1002/aenm.202203143

http://www.helmholtz-berlin.de/

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

3D-Tumormodell für Retinoblastomforschung mit Fokus auf Tumor-Umgebungs-Interaktionen.

Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut

Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…

Private Brunnen als Notwasserversorgung zur Stärkung der Katastrophenresilienz.

Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half

Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…

DNA Origami-Strukturen steuern biologische Membranen für gezielte Medikamentenabgabe

Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können

Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…