Vom Auge abgeschaut: Mikrotrichter aus Silizium erhöhen die Effizienz von Solarzellen
Mit Modellrechnungen und im Experiment testeten sie, wie solche Trichterfelder das einfallende Licht sammeln und in die aktive Schicht einer Siliziumsolarzelle leiten. Durch diese Trichteranordnung steigt die Lichtabsorption in einer damit versehenen Dünnschichtsiliziumsolarzelle um 65 %, was sich in deutlich verbesserten Solarzellparametern u.a. einem erhöhten Wirkungsgrad widerspiegelt.
Mitten im Gelben Fleck der Netzhaut sitzt die Fovea Centralis, die Sehgrube, in der die trichterartigen, schlanken Farb-Sehzapfen ganz besonders dicht gepackt sind. Weil sie überdies eins zu eins mit Nervenzellen verschaltet sind, sehen wir in diesem kleinen Bereich ein maximal scharfes Bild.
Diese dichtgepackte Zapfen-Struktur hat nun das Team um Prof. Dr. Silke Christiansen dazu angeregt, eine ähnliche Struktur in Silizium nachzubilden und ihre Eignung als lichtsammelnde und -leitende Oberfläche für Solarzellen zu untersuchen. Christiansen leitet das Institut für Nanoarchitekturen für die Energiewandlung am Helmholtz-Zentrum Berlin (HZB) und eine Arbeitsgruppe am Max-Planck Institut für die Physik des Lichts (MPL).
„Wir haben in dieser Arbeit gezeigt, dass die Lichttrichter deutlich mehr Licht absorbieren als andere optische Architekturen, die in letzter Zeit getestet wurden“, sagt Sebastian Schmitt, einer der beiden Erstautoren der Veröffentlichung, die im renommierten Journal Nature Scientific Reports erschienen ist.
Kleine Änderung – große Wirkung!
Wie groß die Auswirkung dieser Architektur war, überraschte die Forscherinnen und Forscher allerdings: So war aus früheren Untersuchungen bekannt, dass auch eine Architektur aus sehr dünnen Säulen (ein „Teppich aus Silizium-Nanosäulen“) Licht gut absorbiert. Doch schon geringe Abweichungen von der Säulenform hin zum Trichter verstärkten die Absorption. Im Vergleich mit den Nanosäulen-Teppichen, die seit längerem untersucht werden, schneiden die Trichterfelder nochmals deutlich besser ab.
Dabei erfordert die Herstellung der Lichttrichter keinen besonderen Aufwand und ist mit herkömmlichen halbleitertechnologischen Verfahren wie z.B. dem reaktiven Ionenätzen oder nasschemischen Ätzprozessen machbar. Verglichen mit einem Silizium-Film gleicher Dicke steigert eine Schicht aus Lichttrichtern die Absorption von Sonnenlicht um 65%.
„Durch unsere Modellierungen können wir auch eine Erklärung liefern, warum die Felder aus Lichttrichtern erheblich besser Licht einfangen als Teppiche aus Nanosäulen (siehe diese Publikation). Optische Moden in Nanosäulen „stören“ sich gegenseitig, ein Feld von eng stehenden Nanosäulen nimmt dadurch also weniger effizient Licht auf, als dieselbe Zahl einzelner Nanosäulen es könnte. Bei den Lichttrichtern tritt das Gegenteil ein: Dicht benachbarte Lichttrichter verstärken ihre Absorption gegenseitig“, erklärt Schmitt.
Blick in die Zukunft:
„Mit diesem interessanten ersten Ergebnis planen wir in verschiedenste Richtungen vorzudringen“, sagt Silke Christiansen. Sie und ihr Team arbeiten weiter an der Verbesserung von Dünnschichtsolarzellen auf Siliziumbasis und wollen die Trichter nun in robuste Zellkonzepte einbauen, die sich auch großflächig und kostengünstig realisieren lassen. Dabei können sie auf die Kompetenzen am PVCOMB des HZB zugreifen, wo die Abteilung um Prof. Rutger Schlatmann sich auf Hoch-Skalierung von Labormustern spezialisiert hat und Machbarkeitsstudien für großflächige Solarzellen schnell und effizient umsetzen kann. „In dieser Kooperation werden wir hoffentlich zeitnah mit einer 30cm x 30cm Trichtersolarzelle wieder von uns hören lassen. Sebastian Schmitt arbeitet aber auch an der Nutzung der Trichter für weitere photonische Anwendungen in LEDs und sensorischen Bauelementen. Erste Vorversuche sind so vielversprechend, dass wir zuversichtlich sind, dass diese Anwendungen kein Traum bleiben müssen“, so Silke Christiansen.
Die Arbeit erschien in February 24th in Nature Scientific Reports: Enhanced photovoltaics inspired by the fovea centralis, Gil Shalev, Sebastian W. Schmitt et al. Teamleader: Silke Christiansen, Scientific Reports 5, Article number:8570, doi:10.1038/srep08570
Weitere Informationen:
Prof. Dr. Silke Christiansen
silke.christiansen@helmholtz-berlin.de
HZB-Pressestelle
Dr. Antonia Rötger
antonia.roetger@helmholtz-berlin.de
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14152&sprache=de&ty…
http://www.nature.com/srep/2015/150224/srep08570/full/srep08570.html
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Klimawandel führt zu mehr alpinen Gefahren
Von Steinschlag bis Eislawine: So hat der Klimawandel die Naturgefahren in den Alpen verändert. Der Klimawandel intensiviert vielerorts Naturgefahren in den Bergen und stellt den Alpenraum damit vor besondere Herausforderungen….
SAFECAR-ML: Künstliche Intelligenz beschleunigt die Fahrzeugentwicklung
Mit neuen Methoden des Maschinellen Lernens gelingt es, Daten aus der Crashtest-Entwicklung besser zu verstehen und zu verarbeiten. Im Projekt SAFECAR-ML entsteht eine automatisierte Lösung zur Dokumentation virtueller Crashtests, die…
Robotergestütztes Laserverfahren ermöglicht schonende Kraniotomie im Wachzustand
Um während neurochirurgischen Eingriffen komplexe Hirnfunktionen testen zu können, werden diese an wachen, lokal anästhesierten Patienten durchgeführt. So können die Chirurgen mit ihnen interagieren und prüfen, wie sich ihr Eingriff…