Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren

Die katalytisch inaktive alpha-Phase (links) wandelt sich durch einen Phasenübergang zur hochaktiven gamma-Phase (rechts) um. Die chemischen Details dieses Phasenübergangs konnte das Team mit Röntgenexperimenten an der Endstation LIXEdrom des BESSY II sowie elektrochemischen und computergestützten Analysen im Detail aufklären.
© Hanna Trzesniowski

Einem Team aus Technischer Universität Berlin, HZB, IMTEK (Uni Freiburg) und Siemens Energy ist es gelungen, einen alkalischen Membran-Elektrolyseur zu entwickeln, der an die Leistung von etablierten PEM-Elektrolyseuren heranreicht. Das Besondere: Der Anodenkatalysator besteht aus preisgünstigen Nickelverbindungen und nicht aus Iridium. An BESSY II konnte das Team die katalytischen Prozesse im Detail aufklären. In Freiburg wurden mit einem neuen Beschichtungsverfahren Prototyp-Zellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.

Wasserstoff soll im Energiesystem der Zukunft eine große Rolle spielen, als Energiespeicher, Brennstoff und wertvoller Rohstoff für die Chemie-Industrie. Denn Wasserstoff lässt sich nahezu klimaneutral durch Elektrolyse von Wasser erzeugen, sofern diese mit Strom aus Sonne oder Wind geschieht. Der Hochlauf der grünen Wasserstoffwirtschaft wird aktuell maßgeblich von zwei Systemen bestimmt: der protonenleitenden Membranelektrolyse (PEM) und der klassischen alkalischen Elektrolyse. AEM-Elektrolyseure kombinieren die Vorteile beider Systeme und benötigen beispielsweise keine seltenen Edelmetalle wie Iridium.

Nun haben Forschungsteams aus TU Berlin und HZB gemeinsam mit dem Institut für Mikrosystemtechnik (IMTEK) der Uni Freiburg und Siemens Energy erstmals einen Elektrolyseur vorgestellt, der fast genauso effizient Wasserstoff produziert wie ein PEM-Elektrolyseur. Statt auf Iridium setzten sie auf Nickel-Doppelhydroxidverbindungen mit Eisen, Kobalt oder Mangan und entwickelten ein Verfahren, um eine alkalische Ionenaustauschmembran damit direkt zu beschichten.

Während der Elektrolyse in der Zelle konnten sie operando-Messungen an der Berliner Röntgenquelle BESSY II an der LIXEdrom Endstation durchführen. Ein Theorie-Team aus Singapur und USA half dabei, die experimentellen Daten zu interpretieren. „Dadurch gelang es uns, die relevanten katalytisch-chemischen Prozesse an der katalysatorbeschichteten Membran aufzuklären, insbesondere den Phasenübergang von einer katalytisch inaktiven Alpha-Phase zur hochaktiven Gamma-Phase und die Rolle, welche die verschiedenen O-Liganden und Ni4+-Zentren bei der Katalyse spielen“, erklärt Prof. Peter Strasser, TU Berlin. „Erst diese Gamma-Phase macht unseren Katalysator konkurrenzfähig mit den aktuellen state-of-the-art Katalysatoren aus Iridium. Unsere Arbeit zeigt wichtige Gemeinsamkeiten zu Iridium im katalytischen Mechanismus, aber auch völlig überraschende molekulare Unterschiede.“

Die Untersuchung hat damit das Verständnis der fundamentalen Katalyse Mechanismen der neuen Nickelbasierten Elektroden-Materialien signifikant erweitert. Außerdem verspricht das neu entwickelte Beschichtungsverfahren der Membranelektrode eine sehr gute Skalierbarkeit. Eine erste vollfunktionsfähige Kleinzelle wurde am IMTEK bereits getestet. Damit legen die Arbeiten die Grundlage für eine industrielle Evaluierung und demonstrieren, dass auch ein AEM-Wasserelektrolyseur hocheffizient sein kann.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Peter Strasser
Institut für Chemie, TU Berlin
+49 30 314 29542
pstrasser@tu-berlin.de

Originalpublikation:

High-performance anion-exchange membrane water electrolyzers using NiX (X = Fe,Co,Mn) catalyst-coated membranes with redox-active Ni–O ligands

M. Klingenhof, H. Trzesniowski S. Koch, J. Zhu, Z. Zeng, L. Metzler, A. Klinger, M. Elshamy, F. Lehmann, P. W. Buchheister, A. Weisser, G. Schmid, S. Vierrath, F. Dionigi & P. Strasser
DOI: 10.1038/s41929-024-01238-w

https://www.helmholtz-berlin.de/pubbin/news_seite?nid=28206&sprache=de&seitenid=1

Media Contact

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…