Wasserstofftechnologien: KIT forscht in allen drei Leitprojekten des Bundes

Im Energy Lab 2.0 können die Wissenschaftler des KIT Wasserstoff und damit zusammenhängenden Prozesse erforschen und direkt erproben. (Foto: Markus Breig, KIT)

Wasserstofftechnologien tragen wesentlich zum Erfolg der Energiewende bei. Um eine grüne Wasserstoffwirtschaft weiter voranzutreiben, fördert das Bundesministerium für Bildung und Forschung (BMBF) drei Wasserstoff-Leitprojekte mit bis zu 740 Millionen Euro. In alle drei bringen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) ihre Expertise ein. In den Projekten geht es um Möglichkeiten, grünen Wasserstoff und seine Folgeprodukte direkt auf See zu produzieren, um neue Technologien und Lösungen im Bereich Wasserstofftransport sowie um die Serienfertigung von Elektrolyseanlagen zur Herstellung grünen Wasserstoffs mit regenerativ gewonnener elektrischer Energie.

Grüner Wasserstoff kann dabei helfen, Treibhausgasemissionen zu verringern. Er ist zentrales Schlüsselelement auf dem Weg zur Klimaneutralität Deutschlands bis 2045. So kann Wasserstoff beispielsweise als Brenn-, Hilfs- und Grundstoff in der Industrie eingesetzt werden und lässt sich mittels Brennstoffzellen in Strom und Wärme umwandeln, um Häuser mit Elektrizität zu versorgen und zu beheizen. Außerdem kann Wasserstoff als Treibstoff dienen oder als Rohstoff bei der Produktion synthetischer Kraftstoffe für LKWs, Züge, Schiffe und Flugzeuge. Gemeinsam mit Partnern aus Industrie, Wissenschaft und Verbänden aus ganz Deutschland arbeiten die Wissenschaftlerinnen und Wissenschaftler des KIT in den drei Leitprojekten daran, die dafür notwendigen Technologien maßgeblich weiterzuentwickeln: H₂Mare untersucht Möglichkeiten, grünen Wasserstoff und seine Folgeprodukte direkt auf See mithilfe von Windenergieanlagen zu produzieren, in TransHyDE entwickeln, bewerten und demonstrieren die beteiligten Partner wasserstoffbasierte Technologien und Lösungen für den Wasserstofftransport und H₂Giga erforscht die serienmäßige Herstellung von Wasser-Elektrolyseuren, also von Anlagen zur Wasserstofferzeugung mit Strom.

„Wenn wir den CO₂-Austoß massiv reduzieren und die Energiewende meistern wollen, ist Wasserstoff ein unverzichtbares Instrument. Mit seiner jahrzehntelangen Erfahrung beim Thema Wasserstoff, die von der Forschung an Grundlagen bis zu ganz konkreten Anwendungen reicht, leistet das KIT hier entscheidende Beiträge“, sagt der Präsident des KIT, Professor Holger Hanselka. „In den Leitprojekten des Bundes bringen wir dieses Know-how ein und schaffen zusammen mit den beteiligten Akteuren aus Forschung, Politik und Gesellschaft neue Synergien, um so zügig zu Lösungen kommen.“

H₂Mare: Wasserstofferzeugung auf See

Offshore-Windparks, also Windräder auf See, stellen eine wichtige Ergänzung zu Windparks an Land dar und werden derzeit weltweit mit Hochdruck vorangetrieben. Durch die kontinuierlich guten Windbedingungen auf See und die hohe Zahl an Volllaststunden, ist der Energieertrag offshore deutlich höher als an Land. Das Leitprojekt H₂Mare schafft die Grundlagen dafür, dass sich die Offshore-Windenergie ohne Netzanbindung direkt nutzen lässt, um beispielsweise über die Wasserelektrolyse grünen Wasserstoff herzustellen. Ziel ist es, die Kosten von grünem Wasserstoff zu senken und die Wirtschaftlichkeit zu erhöhen. „Am KIT erforschen wir, wie wir aus dem auf einer Offshore-Plattform erzeugten grünen Wasserstoff direkt vor Ort einfach transportierbare Produkte, wie verflüssigtes Methan, flüssige Kohlenwasserstoffe, Methanol und Ammoniak, für die chemische Industrie oder für Kraftstoffe herstellen können“, sagt Professor Roland Dittmeyer vom Institut für Mikroverfahrenstechnik (IMVT) des KIT. „Um den dynamischen Betrieb direkt an Offshore-Windparks gekoppelter Power-to-X-Anlagen zu erproben, nutzen wir unseren Power-to-X-Anlagenkomplex im Energy Lab 2.0 am KIT.“ Die transportable, container-basierte Forschungsplattform e XPlore, die das KIT gemeinsam mit dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) entwickelt hat, soll außerdem einen ersten realitätsnahen Versuchsbetrieb einer vollständigen Power-to-X-Prozesskette in maritimer Umgebung ermöglichen.

Das KIT ist mit dem IMVT, das mit „PtX-Wind“ auch eines der vier Verbundprojekte koordiniert, und dem Engler-Bunte-Institut (EBI) an H₂Mare beteiligt.

TransHyDE: Transportlösungen für grünen Wasserstoff

Nur selten wird Wasserstoff dort genutzt, wo er hergestellt wird. Um den Bedarf in Deutschland zu decken, muss er größtenteils aus wind- und sonnenreichen Regionen transportiert oder importiert werden. Deshalb erforscht und entwickelt das Leitprojekt TransHyDE Transporttechnologien und infrastrukturen für grünen Wasserstoff. „Flüssiger Wasserstoff weist bei größter Reinheit auch die höchste Energiedichte auf. Am KIT nutzen wir die Energie und die Kälte des flüssigen Wasserstoffs, indem wir sie mit elektrotechnischen Anwendungen vereinen, wie etwa im Energietransport mit Hochtemperatur-Supraleitern oder in den Antriebssträngen von Fahrzeugen“, sagt Professorin Tabea Arndt vom Institut für Technische Physik (ITEP) des KIT. Der Einsatz von Hochtemperatur-Supraleitern ermöglicht es, energieeffizient elektrische Energie und parallel chemische Energie zu transportieren. „Außerdem entwickeln wir Sicherheitsstrategien für Materialien und Handhabung über industrielle Anlagen hinaus“, so Arndt. In den Anlagen des KIT können die Wissenschaftlerinnen und Wissenschaftler die gesamte Kette von der Wasserstoff-Verflüssigung über die energietechnischen Anwendungen der Elektrotechnik bis hin zu Brennstoffzellenheizungen erforschen und umsetzen.

Das KIT ist mit dem Institut für Technische Physik (ITEP), welches das Verbundprojekt „AppLHy!“ zum Flüssigwasserstofftransport innerhalb von TransHyDE koordiniert, sowie mit dem Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), dem Institut für Thermische Energietechnik und Sicherheit (ITES) und dem Elektrotechnischen Institut (ETI) beteiligt.

H₂Giga: Serienfertigung von Elektrolyseuren zur Wasserstofferzeugung

Grüner Wasserstoff lässt sich per Elektrolyse mit erneuerbaren Energien herstellen und als Energieträger vielfältig einsetzen. Die Produktion von Elektrolyseuren, also von Anlagen zur Wasserstofferzeugung mittels Strom, ist jedoch aufwändig und kostenintensiv. Das Leitprojekt H₂Giga will ihre serienmäßige und kostengünstige Produktion ermöglichen, um Deutschlands Bedarf an grünem Wasserstoff zu decken. Innerhalb der Technologieplattform ist das KIT an zwei Verbundprojekten beteiligt.

Im Verbund „HTEL-Stacks – Ready for Gigawatt“ wollen die Beteiligten Stacks, also Zellstapel, für die Hochtemperaturelektrolyse und dazugehörige Produktionsprozesse und -anlagen entwickeln. „Die Elektrolyse bei hohen Temperaturen benötigt weniger kostenintensive elektrische Energie und der Mehrbedarf an thermischer Energie kann durch die in der Zelle entstehende Verlustwärme abgedeckt werden. Mit der Hochtemperaturelektrolyse können dann Wirkungsgrade von bis zu 100 Prozent erreicht werden, aktuelle Systeme erreichen bereits über 80 Prozent“, sagt Dr. André Weber vom Institut für Angewandte Materialien – Elektrochemische Technologien (IAM-ET) des KIT. „Wir am KIT analysieren vor allem über elektrochemische und elektronenmikroskopische Methoden die Leistungsfähigkeit und Lebensdauer der Hochtemperatur-Zellen und Stackkomponenten.“ Die Sunfire GmbH koordiniert das Projekt.

Der zweite Verbund „Stack Scale-up – Industrialisierung PEM Elektrolyse“ entwickelt neue Stack-Technologien und großserientaugliche Produktionsverfahren für die Niedertemperatur-Elektrolyse. Diese Elektrolyse über Polymerelektrolytmembran-Zellen (PEM-Zellen) zeichnet sich durch niedrige Betriebstemperaturen und eine hohe Leistungsdichte aus. „Am KIT charakterisieren und modellieren wir diese elektrochemisch und strömungstechnisch. Mithilfe modellbasierter Optimierungen wollen wir dann neue, leistungsfähigere Stack-Designs entwickeln“, so Weber. Der Verbund wird von der Schaeffler AG koordiniert.

Neben dem IAM-ET sind seitens des KIT das Laboratorium für Elektronenmikroskopie (LEM) und das Institut für Strömungsmechanik (ISTM) an den Projekten beteiligt.

Hintergrund: Ideenwettbewerb „Wasserstoffrepublik Deutschland“

Mit der Ausschreibung des Ideenwettbewerbs „Wasserstoffrepublik Deutschland“ hat das BMBF im vergangenen Jahr den Einstieg Deutschlands in die Grüne Wasserstoffwirtschaft vorangebracht. Auf Grundlage der eingegangenen Ideen und Vorschläge wurden die drei Leitprojekte zu zentralen Herausforderungen der grünen Wasserstoffwirtschaft formiert.

Weitere Informationen: https://www.wasserstoff-leitprojekte.de/

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 600 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 23 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

Wissenschaftliche Ansprechpartner:

Sandra Wiebe, Pressereferentin, Tel.: +49 721 608-41172, E-Mail: sandra.wiebe@kit.edu

Weitere Informationen:

https://www.kit.edu/kit/pi_2021_078_wasserstofftechnologien-kit-forscht-in-allen…

Media Contact

Monika Landgraf Strategische Entwicklung und Kommunikation - Gesamtkommunikation
Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung multiferrischer Heterostrukturen für energieeffizientes MRAM mit riesigem magnetoelektrischem Effekt.

Magnetischer Speicher mit energieeffizientem MRAM freigeschaltet

Forscher der Universität Osaka stellen innovative Technologie zur Senkung des Energieverbrauchs moderner Speichervorrichtungen vor. Fortschritt in der Speichertechnologie: Überwindung der Grenzen traditioneller RAM Osaka, Japan – In den letzten Jahren…

Framework zur Automatisierung von RBAC-Konformitätsprüfungen mithilfe von Prozessmodellierung und Richtlinienvalidierungswerkzeugen.

Next-Level System-Sicherheit: Intelligenterer Zugriffsschutz für Organisationen

Fortschrittliches Framework zur Verbesserung der System-Sicherheit Forschende der University of Electro-Communications haben ein bahnbrechendes Framework zur Verbesserung der System-Sicherheit durch die Analyse von Geschäftsprozessprotokollen entwickelt. Dieses Framework konzentriert sich darauf,…

Tiefseesedimentkern zeigt mikrobielle Karbonatbildung an Methanquellen.

Wie mikrobielles Leben die Kalkbildung im tiefen Ozean beeinflusst

Mikroorganismen sind überall und beeinflussen die Umwelt der Erde seit über 3,5 Milliarden Jahren. Forschende aus Deutschland, Österreich und Taiwan haben nun erstmals die Rolle entschlüsselt, die Mikroorganismen bei der…