Weltweit leistungsstärkster Laser-Oszillator entwickelt
Wissenschaftler der Helmut-Schmidt-Universität/UniBw H haben einen besonders leistungsfähigen Dünnscheiben-Laser-Oszillator entwickelt, der Spitzenleistungen bringt, die bisher nur durch mehrfache Verstärkung mit komplexen und riesigen Lasersystemen erreicht werden konnten. Das neue Geräte könnte helfen, das größte Rätsel der modernen Physik zu entschlüsseln.
Hamburger Wissenschaftler der Helmut Schmidt Universität/UniBw H ist es gelungen, einen besonders leistungsstarken Dünnscheiben-Laser-Oszillator zu entwickeln. Laser-Oszillatoren erzeugen und verstärken im Gegensatz zu Laserverstärkern die Laserstrahlung zeitgleich aus einem einzigen Gerät.
Das Kernstück des neuen Systems besteht aus einem Laser-Verstärkungs-Medium in einer besonderen Dünnscheibengeometrie und einer speziellen Anordnung von Spiegeln, die den Laserresonator bilden. Der Laser kann 14 Millionen Pulse pro Sekunde aussenden, jeder Puls enthält 110 MW Spitzenleistung.
Diese herausragenden Werte konnte man bisher nur durch mehrfache Verstärkung mit komplexen und riesigen Lasersystemen erreichen. Der neue, im Team von Prof. Pronin in der Professur für Laser Technology & Spectroscopy entwickelte Dünnscheibenoszillator, kann solche Werte nun mit einem wesentlich einfacheren Aufbau und ohne zusätzliche Verstärkung erreichen.
Dank seiner hohen Spitzenleistung kann die Ausgangsstrahlung des neuen Oszillators in den tiefen UV-Spektralbereich umgewandelt werden, in dem derzeit keine Frequenz-stabilen Laser existieren. Diese Art von tiefem UV-Laser wird eine neue Art einer extrem präzisen Uhr ermöglichen – eine Kernuhr -, die den Wissenschaftlern helfen könnte, dunkle Materie aufzuspüren und das größte Rätsel der modernen Physik zu entschlüsseln.
Darüber hinaus kann das neu entwickelte Instrument, sobald es auf den Markt kommt, weitere neue Anwendungen in der Halbleitermesstechnik im ultravioletten Bereich und in der High-End-Hochpräzisionsspektroskopie bieten.
Dieser Artikel bezieht sich auf die in Kürze in in der wissenschaftlichen Fachzeitschrift „Optics Express“ erscheinende Veröffentlichung.:
„S. Goncharov, K. Fritsch, O. Pronin. “110 MW Thin-Disk Oscillator,” Optics Express 31(11), (2023)“
Für weitere Informationen wenden Sie sich bitte an:
Prof. Dr. Oleg Pronin
Fakultät für Elektrotechnik, Helmut Schmidt Universität Hamburg
oleg.pronin@hsu-hh.de
Wissenschaftliche Ansprechpartner:
Prof. Dr. Oleg Pronin, oleg.pronin@hsu-hh.de
Originalpublikation:
Dieser Artikel bezieht sich auf die in Kürze in in der wissenschaftlichen Fachzeitschrift „Optics Express“ erscheinende Veröffentlichung.:
„S. Goncharov, K. Fritsch, O. Pronin. “110 MW Thin-Disk Oscillator,” Optics Express 31(11), (2023)“
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…