Erdbebenvorhersage mit Spannungen
Erdbeben rufen in vielen Teilen der Erde immer wieder grosse Schäden hervor. Wichtig für einen wirksamen Schutz der Bevölkerung ist deshalb eine möglichst genaue Prognose, wo und wie ein Erdbeben stattfinden wird. ETH-Wissenschaftler haben nun eine neue statistische Methode entwickelt, mit welcher sie Erdbeben besser vorhersagen können. Ihre Methode publizieren die ETH-Forscher in der neuesten Ausgabe der Zeitschrift „Nature“.
Mitten in Kalifornien, etwa auf halbem Weg zwischen Los Angeles und San Francisco, befindet sich ein wichtiger Ort für Seismologen: Parkfield. Diese nur wenige Einwohner zählende Ortschaft liegt direkt auf der San-Andreas-Verwerfung, welche die amerikanische von der pazifischen Platte trennt. Parkfield hat seit mehr als 20 Jahren eines der dichtesten seismologischen Messnetzwerke, das sogenannte Parkfield-Vorhersage-Experiment.
Parkfield als optimales Testgebiet
Das Interesse an diesem Bereich der San-Andreas-Verwerfung erklärt sich schnell: Hier haben sich in den Jahren 1857, 1881, 1901, 1922, 1934 und 1966 jeweils Erdbeben der Magnitude 6 ereignet. Die Regelmässigkeit des Auftretens von Erdbeben der gleichen Grösse veranlasste viele Wissenschaftler dazu, ein weiteres Erdbeben mit derselben Magnitude in Parkfield in den frühen 90er Jahren zu erwarten. Dieses Beben sollte durch das Experiment möglichst vollständig erfasst und auch vorhergesagt werden. In den 90er Jahren blieb das Beben aber aus. Dennoch konnte man durch detaillierte Studien in Parkfield Aussagen über die Spannungszustände in der Erde machen: nördlich von Parkfield befindet sich ein Bereich mit sogenannten kriechender Plattenbewegung. Dieser erzeugt nur Beben geringer Stärke. Dagegen schliesst sich südlich ein blockierter Bereich an, in dem sich Beben der Magnitude 6 ereignet haben.
Mit Statistik der Spannung im Erdboden auf der Spur
In der Region Parkfield haben Wissenschaftler Messinstrumente in engem Abstand installiert. So konnten sie in den letzten rund 20 Jahren genaue Daten über mehr als 10000 Mikroerdbeben aufzeichnen. Die ETH-Seismologen Danijel Schorlemmer und Stefan Wiemer haben die so gewonnenen Daten mithilfe statistischer Verfahren in den Jahren 1997 und 2004 genauer untersucht. Dabei ist die Gutenberg-Richter-Erdbebenverteilung von besonderer Bedeutung. Sie gibt den so genannten b-Werte an. Er beschreibt das mengenmässige Verhältnis zwischen kleinen und mittleren bis grossen Beben in einer festgelegten Region. Ein niedriger b-Wert bedeutet also, dass es in der Vergangenheit weniger kleine Beben im Verhältnis zu den mittleren und grossen Beben gab. Die beiden Wissenschaftler nahmen nun an, dass Bereiche mit deutlich unter dem Durchschnitt liegendem b-Wert unter hoher Spannung stehen und somit auch Bereiche sind, in denen sich in der Zukunft Erdbeben ereignen werden. Höhere b-Werte dagegen sind ein Anzeichen für niedrige Spannung, also keine Gefahr für ein zerstörerisches Erdbeben.
Erdbeben in Parkfield bestätigt die Hypothese
Das für die frühen 90er Jahre erwartete Parkfield-Erdbeben ereignete sich schliesslich am 28. September 2004. Niemand kam bei diesem Beben zu Schaden, weil die Region nur sehr dünn besiedelt ist. Es wurden keine Bebenvorläufer beobachtet und – anders als erwartet – nahm das Beben seinen Anfang nicht am nördlichen Ende des blockierten Bereichs und brach diesen nach Süden hin, sondern startete im Süden und entwickelte sich nach Norden hin. Die Nachbeben bestätigten jedoch die Hypothese der Forscher. Sie sind gute Indikatoren für die Bruchausdehnung eines Bebens. Ihre Verteilung im Fall des Bebens vom 28. September 2004 und auch die berechnete Bruchverteilung entsprechen den Vorhersagen von Schorlemmer und Wiemer. Überall, wo die Seismologen niedrige b-Werte gefunden hatten, wurden Erdbeben beobachtet.
Grosses Potenzial zur Vorhersage eines Bebens
Obwohl also der Zeitpunkt des Bebens nicht vorhergesagt werden konnte, geben diese Ergebnisse Grund zur Hoffnung, dass mit Hilfe detaillierter statistischer Analysen der Erdbebenaktivität Orte zukünftiger Beben identifiziert werden können. Auch die Stärke eines Bebens lässt sich mit dieser Methode abschätzen, da die Ausdehnung eines Erdbebens seiner Stärke entspricht. Die ETH-Forscher planen nun ihre Hypothese in weiteren Regionen zu testen.
Kontakt:
Danijel Schorlemmer
ETH Zürich
Institut für Geophysik
+41 44 633 38 57
schorlemmer@sed.ethz.ch
Dr. Stefan Wiemer
ETH Zürich
Schweiz. Erdbebendienst (SED)
+41 44 633 38 57
wiemer@sed.ethz.ch
Media Contact
Alle Nachrichten aus der Kategorie: Geowissenschaften
Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.
Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.
Neueste Beiträge
Wegweisend für die Diagnostik
Forschende der Universität Jena entwickeln Biosensor auf Graphen-Basis. Zweidimensionale Materialien wie Graphen sind nicht nur ultradünn, sondern auch äußerst empfindlich. Forschende versuchen deshalb seit Jahren, hochsensible Biosensoren zu entwickeln, die…
Rotorblätter wiederverwenden
h_da-Team als „Kultur- und Kreativpilot*innen Deutschland“ ausgezeichnet. Rotorblätter von Windkraftanlagen wiederverwenden statt zu entsorgen: Das „Creative Lab rethink*rotor“ am Fachbereich Architektur der Hochschule Darmstadt (h_da) zeigt, dass sich hieraus Schallschutzwände…
Weltweit erstes Zentrum für Solarbatterien
Strategische Partnerschaft zur Optoionik von TUM und Max-Planck-Gesellschaft. Energie von Sonnenlicht direkt elektrochemisch speichern Optoionik als Querschnittswissenschaft zwischen Optoelektronik und Festkörperionik Bayern als internationaler als Innovationsführer bei solarer Energiespeicherung Das…