Halten Spiralwirbel und Bakterien Methan im Meerwasser zurück? Poseidon-Fahrt erfolgreich beendet
Wissenschaftlerinnen und Wissenschaftler untersuchten, ob für diese „Abpufferung“ die besondere Form des Spiralwirbels verantwortlich sein kann, in der das Gas innerhalb der Wassersäule nach oben steigt. Eine weitere Hypothese geht davon aus, dass mit den aufsteigenden Gasblasen Methan-abbauende Mikroorganismen in die Wassersäule gelangen, die das Klimagas in unschädlichere Substanzen umwandeln.
Im Jahr 1990 kam es im englischen Sektor in der zentralen Nordsee nach Probebohrungen im Auftrag der Firma Mobil North Sea (heute ExxonMobil) zu einem unkontrollierten Gas-Blowout. Der anfangs extreme Strom an Methangas an die Wasseroberfläche schwächte sich zwar schnell ab, ein Versiegen der Quelle konnten die Forscher aber bis heute nicht feststellen: Nach wie vor zählt diese Stelle zu einer der aktivsten marinen Methangasquellen weltweit.
Wissenschaftler des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel hatten bereits im Jahr 2005 während einer Forschungsreise mit dem Forschungsschiff ALKOR anhaltende Austritte des Klimagases Methan aus einem 50 Meter breiten und 20 Meter tiefen Krater am Meeresboden bis an die Meeresoberfläche nachweisen können. Dank zahlreicher Folgefahrten konnten die Forscher belegen, dass dabei jedoch nur sehr geringe Mengen an Methan von der Quelle bis in die Atmosphäre transportiert werden.
Unter Fahrtleitung von Dr. Jens Schneider von Deimling, Geophysiker am Institut für Geowissenschaften an der Universität Kiel, hat das Forschungsteam der Uni Kiel und des Leibniz-Instituts für Ostseeforschung gemeinsam mit Kollegen der University of California (UCLA) und des GEOMAR nun den Krater in 95 Metern Wassertiefe mit einer Verknüpfung von hydroakustischen, biogeochemischen, mikrobiologischen und ozeanographischen Methoden untersucht.
Dabei standen zum einen komplexe Gaswirbel und die Einschichtung unter der sommerlichen Sprungschicht in der Nordsee im Fokus. Bereits vorangegangene Untersuchungen gaben den Forschern deutliche Hinweise auf die Ausbildung von großen Gasblasen-Spiralwirbeln in der Wassersäule.
Videoaufnahmen mit dem ROV PHOCA des GEOMAR und schiffsbasierte Fächerecholotstudien zum so genannten „Spiral Vortex“ in der durch Gasblasen beeinflussten Wassersäule zeigten, dass individuelle, vom Sediment freigesetzte Gasblasenströme sich zu einem spiralförmigen Wirbel vereinen. Im Rahmen der aktuellen Expedition wurden nun spezielle Sonargeräte eingesetzt, um derartige Spiralbewegung nachzuweisen und quantitativ zu erfassen.
Die Wirbel befinden sich unterhalb der Temperatur-Sprungschicht in rund 50 Metern Wassertiefe, wo sich methanangereichertes Wasser befindet. Die Forscher vermuten, dass diese das Lösungsverhalten und die Verteilung des Methans im Wasser wesentlich beeinflussen.
„Anscheinend tragen die gasblasen-induzierten Verwirbelungen entscheidend dazu bei, dass sich Methanblasen deutlich stärker im Wasser lösen als wir es in Modellen zuvor angenommen haben“, sagt Fahrtleiter Dr. Jens Schneider von Deimling vom Institut für Geowissenschaften an der Uni Kiel. Mithilfe akustischer Spezialverfahren erhoffen sich die Forscher weitere Erkenntnisse darüber wie genau die Spiralbewegung der Gasaustritte den Transport des klimaschädlichen Methans beeinflusst. Die Ergebnisse könnten eine entscheidende Grundlage für die Aufschlüsselung von Prozessen auch an natürlichen Gasfeldern sein.
Einen weiteren Schwerpunkt der Expedition bildete die Frage, in welchem Maße aufsteigende Gasblasen als Transport-Vehikel für Bakterien dienen, die anschließend das gelöste Methan in der Wassersäule in unschädlichere Substanzen umwandeln. Diese so genannten methanotrophen Mikroorganismen kommen sowohl im Sediment als auch in der Wassersäule von methanreichen Gebieten vor.
„Dass Methan-abbauende Bakterien einen solchen Transport nutzen, konnten wir bereits mithilfe unseres Bubble Catchers an einer weniger starken, natürlichen Methanquelle vor der Küste Kaliforniens zeigen. Nun wollten wir prüfen, wie sich diese Ergebnisse auf starke Gasaustritte, so genannte Mega-Seeps, übertragen lassen. Der lokal begrenzte Austritt von Gasblasen im Kraterinneren ermöglicht zudem eine bessere Abschätzung, wie groß der Anteil der mit den Blasen aufsteigenden Bakterien am Gesamt-Pool der Methan-verzehrenden Mikroorganismen in der den Krater umgebenden Wassersäule ist,“ sagt Dr. Oliver Schmale, Wissenschaftler am Leibniz-Institut für Ostseeforschung Warnemünde und Leiter des DFG-Projektes “Bubble shuttle – transport of methane-oxidizing microorganisms from the sediment into the water column through gas bubbles“.
Oliver Schmale war an Bord der Poseidon für die Untersuchungen des mikrobiellen Gasblasen-Transportes zuständig. Der mit künstlichem, sterilem Meerwasser gefüllte Zylinder des Bubble Catchers fängt die vom Boden aufsteigenden Gasblasen samt der ihnen anheftenden Bakterien möglichst kontaminationsfrei auf, sodass durch anschließende mikroskopische Analysen (CARD-FISH) eine Bestimmung erfolgen kann. Auf der Poseidon kam ein neuer, handlicher Bubble Catcher zum Einsatz, der auch von einem ROV (Remote Operating Vehicle) bedient werden kann.
„Der Einsatz eines solchen ferngesteuerten Unterwasser-Arbeitsgerätes, das dann auch noch ein hochspezialisiertes Probennahme- und Messgerät wie unseren Bubble Catcher bedienen muss, ist immer Nerven aufreibend. Zuviel kann schief gehen, was dann die Arbeit von Monaten zunichtemachen kann. Aber dank einer guten Vorbereitung und der reibungslosen Zusammenarbeit zwischen dem ROV-Team des GEOMAR, der Schiffsbesatzung und uns war der Einsatz ein voller Erfolg.“ Für Oliver Schmale und IOW-Doktorand Sebastian Jordan hat damit der riskanteste Teil der Projektarbeit seinen glücklichen Abschluss gefunden: die Proben sind genommen. Nun beginnen die Laborarbeiten in Warnemünde und Kiel.
„Die genauen Ergebnisse der Expedition, wann und in welcher Ausprägung sich Spiralwirbel ausbilden, werden erst in einigen Monaten feststehen. Bis dahin gilt es allein in Kiel, mehr als drei Terrabyte an Daten zu verarbeiten“, resümiert Fahrtleiter Dr. Jens Schneider von Deimling.
Publikationen zum Thema
Schneider von Deimling, J., P. Linke, M. Schmidt and G. Rehder (2015). Ongoing methane discharge at well site 22/4b (North Sea) and discovery of a spiral vortex bubble plume motion. Marine and Petroleum Geology, Vol 68, Part B: 718-730, doi: 10.1016/j.marpetgeo.2015.07.026 (open access)
Schmale O., Leifer I., Schneider v. Deimling J., Stolle C., Krause S., Kießlich K., Frahm A., and Treude T. (2015). Bubble Transport Mechanism: Indications for a gas bubble-mediated inoculation of benthic methanotrophs into the water column, Cont. Shelf Res., 103, 70-78.
Kontakt
Dr. Jens Schneider von Deimling, Institut für Geowissenschaften, Christian-Albrechts-Universität zu Kiel, Telefon (0431) 880-5792, jschneider@geophysik.uni-kiel.de
Dr. Oliver Schmale, Leibniz-Institut für Ostseeforschung Warnemünde (IOW), Sektion Meereschemie, Telefon (0381) 5197-305, oliver.schmale@io-warnemuende.de
Pressestellen
Friederike Balzereit, Öffentlichkeitsarbeit, Exzellenzcluster „Ozean der Zukunft“, Telefon (0431) 880-3032, fbalzereit@uv.uni-kiel.de
Dr. Barbara Hentzsch, Leibniz-Institut für Ostseeforschung Warnemünde (IOW), Telefon (0381) 5197-102, barbara.hentzsch@io-warnemuende.de
Media Contact
Alle Nachrichten aus der Kategorie: Geowissenschaften
Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.
Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.
Neueste Beiträge
Überlebenskünstler im extremen Klima der Atacama-Wüste
Welche Mikroorganismen es schaffen, in den extrem trockenen Böden der Atacama-Wüste zu überleben, und welche wichtigen Funktionen sie in diesem extremen Ökosystem übernehmen – zum Beispiel bei der Bodenbildung –,…
Hoffnung für Behandlung von Menschen mit schweren Verbrennungen
MHH-Forschende entwickeln innovatives Medikament, um die Abstoßung von Spenderhaut-Transplantaten zu verhindern. Wenn Menschen schwere Verbrennungen erleiden, besteht nicht nur die Gefahr, dass sich die Wunde infiziert. Der hohe Flüssigkeitsverlust kann…
Neue Erkenntnisse zur Blütezeit-Regulation
Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…