Heiße Spuren im Gestein

Das poröse Dolomitgestein mit Hohlräumen ist hervorragend für eine geothermische Nutzung geeignet.
© RUB, Marquard

Im Untergrund zirkulierende Flüssigkeiten verändern Gesteine im Laufe der Zeit. Diese Prozesse muss man berücksichtigen, wenn man sie als Klimaarchiv benutzen möchte. Dr. Mathias Müller aus der Arbeitsgruppe Sediment- und Isotopengeologie der Ruhr-Universität Bochum hat gemeinsam mit internationalen Kolleg*innen am Beispiel des 380 Millionen Jahre alten Massenkalks in Hagen-Hohenlimburg im Detail gezeigt, welche Klimainformationen noch im Gestein erhalten sind. Darüber hinaus kann er aus seinen Analysen Rückschlüsse ziehen, wie gut das Gestein heute für die tiefengeothermische Nutzung geeignet ist.

Mathias Müller untersucht Veränderungen, die Gesteine im Laufe der Jahrmillionen durchlaufen haben.
Mathias Müller untersucht Veränderungen, die Gesteine im Laufe der Jahrmillionen durchlaufen haben. © RUB, Marquard

Die Ergebnisse seiner Arbeit sind in der Zeitschrift Geochimica et Cosmochimica Acta vom 1. Juli 2024 veröffentlicht.

Klimaarchiv im Gestein

Um das heutige Klima besser zu verstehen, kann ein Blick in die Vergangenheit helfen. Forschende nutzen dafür sogenannte Proxies: indirekte Anzeiger des Klimas in natürlichen Archiven wie Eisbohrkernen, Baumringen oder Tropfsteinen. „Will man etwas über das Klima vor mehreren Millionen oder gar Milliarden Jahren erfahren, untersucht man Sedimentgesteine, die sogar die Meerwassertemperatur vor Hunderten Millionen Jahren gespeichert haben können“, erklärt Mathias Müller.

Was diese Art der weit zurückreichenden Klimaforschung erheblich erschweren kann, ist die nachträgliche Veränderung der in diesen Gesteinen gespeicherten Klimasignaturen. Dieser Prozess wird Diagenese genannt. Er beginnt schon kurz nach der Sedimentablagerung im Meerwasser und kann bis heute andauern. „Sehr alte Gesteine werden meist bis in Tiefen von einigen Kilometern versenkt“, so Mathias Müller. „Veränderungen von Klimainformationen entstehen dann durch in der Tiefe zirkulierende heiße Flüssigkeiten.“ Sie führen dort, wo sie das Gestein durchdringen können, oft zu Rekristallisation oder neuem Wachstum von Mineralen im Gestein. Außerdem werden Gesteine, wenn sie aus der Tiefe an die Erdoberfläche gehoben wurden, vom Wetter beeinflusst. Auch durch diese sogenannte Meteorische Diagenese können alte Klimainformationen beeinflusst oder gänzlich unbrauchbar werden.

Vom Flachmeer zum Gebirge

Gemeinsam mit einem internationalen Forschungsteam konnte Mathias Müller detailliert rekonstruieren, welche Klimainformationen aus dem Flachmeer zur Zeit des Devons noch im Gestein im Raum Hagen-Hohenlimburg gespeichert sind und durch welche Prozesse und unter welchen Bedingungen sie bis heute verändert worden sind. Die Forschenden analysierten dafür zahlreiche systematisch genommene Gesteinsproben aus dem Steinbruch Steltenberg mit petrografischen sowie geochemischen Methoden.

„Überrascht hat uns, dass wir eine große Anzahl bedeutender erdgeschichtlicher Ereignisse wie die Öffnung des Nordatlantiks im Jura oder die beginnende Auffaltung und spätere Hebung der Hunderte Kilometer entfernten Alpen seit der späten Kreidezeit an den Veränderungen des Gesteins ablesen konnten“, berichtet Mathias Müller. Den Schlüssel für die zeitliche Einordnung der im Gestein gespeicherten sogenannten Überprägungsereignisse sieht er in der radiometrischen Uran-Blei-Datierung. „Besonders erfreulich war bei den Untersuchungen die Erkenntnis, dass selbst in stark überprägten Gesteinen noch Klimainformationen aus der Devonzeit vorhanden sein können“, so der Forscher.

Von der Klimaforschung zur Geothermie

Von Interesse sind die Erkenntnisse der Studie auch für die Nutzung von Gesteinen für die Tiefengeothermie, die zur Energiewende beitragen kann. Die Vorhersage, wo im Untergrund welche Bedingungen angetroffen werden, stellt die Forschung bislang vor große Herausforderungen. „Besonders bei Karbonatgesteinen kann die diagenetische Überprägung sowohl zu Fällungs- als auch Lösungserscheinungen im Gestein führen, was sich dramatisch auf die mögliche Nutzbarkeit für die Geothermie auswirken kann“, so Mathias Müller.

Die Ergebnisse der aktuellen Studie lassen erste optimistische Schlüsse darauf zu, dass ein Teil der charakterisierten Prozesse im tieferen Untergrund die Nutzbarkeit für die Geothermie erhöht haben könnte. Gemeinsam mit Forschenden der Fraunhofer-Einrichtung für Energieinfrastrukturen und Geothermie IEG und dem Geologischen Dienst Nordrhein-Westfalen möchte Mathias Müller aktuell herausfinden, welche Folgerungen die Erkenntnisse von der Erdoberfläche für die Anwendbarkeit in der Nutzungstiefe der Geothermie zulassen.

Wissenschaftliche Ansprechpartner:

Dr. Mathias Müller
Sediment- und Isotopengeologie
Institute für Geologie, Mineralogie und Geophysik
Ruhr-Universität Bochum
Tel. +49 234 32 23256
E-Mail: mathias.mueller-l1y@ruhr-uni-bochum.de

Originalpublikation:

Mathias Mueller, Benjamin Florian Walter, Robert Johannes Giebel, Aratz Beranoaguirre, Peter K. Swart, Chaojin Lu, Sylvia Riechelmann, Adrian Immenhauser: Towards a Better Understanding of the Geochemical Proxy Record of Complex Carbonate Archives, in: Geochimica et Cosmochimica Acta, 2024, DOI: 10.1016/j.gca.2024.04.029. https://www.sciencedirect.com/science/article/pii/S0016703724001984?via%3Dihub

http://www.ruhr-uni-bochum.de/

Media Contact

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Roboterhand lernt zu fühlen

Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…

Regenschutz für Rotorblätter

Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…

Materialforschung: Überraschung an der Korngrenze

Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…