Klima: Ammoniak treibt Wolkenbildung an

Blick in die Wolkenkammer CLOUD
Bild: CERN

Der vermehrte Einsatz von Kunstdünger und Mist aus der Tierhaltung bringen mehr Ammoniak in die Atmosphäre. Während des asiatischen Monsuns wird Ammoniak, das von landwirtschaftlich genutzten Gebieten stammt, verstärkt in die obere Troposphäre transportiert. Dort beschleunigt der Luftschadstoff die Bildung von Partikeln und damit die Entstehung von Wolken. Das zeigen Experimente eines internationalen Forschungsteams am CERN bei Genf, an dem der Ionenphysiker Armin Hansel von der Universität Innsbruck und der Aerosolphysiker Paul Winkler von der Universität Wien beteiligt waren.

Ob und wie viele Wolken am Himmel sind, hat großen Einfluss darauf, wie sich die Erde weiter erwärmt. Diesen Effekt in Klimamodellen zu quantifizieren ist bis heute mit großen Unsicherheiten verbunden. Das liegt vor allem daran, dass die Entstehung von Kondensationskeimen in der Atmosphäre nur ungenügend verstanden wird. Seit 2009 erforscht ein internationales Team beim Großexperiment CLOUD am europäischen Kernforschungszentrum CERN bei Genf die molekularen Mechanismen der Neubildung von Partikeln aus atmosphärischen Gasen, aus denen sich Kondensationskeime für Wolken bilden. In einer aktuellen Studie in der Fachzeitschrift Nature zeigen die Wissenschaftler*innen nun, dass die Anwesenheit von Ammoniak in der oberen Troposphäre zur verstärkten Bildung von Partikeln führen kann.

Ammoniak treibt Wolkenbildung an

Die Troposphäre ist die unterste Schicht der Erdatmosphäre und reicht bis rund 15 Kilometer über die Erdoberfläche. Die obere Troposphäre spielt eine wichtige Rolle im Klimasystem. Gerade hier haben bereits geringe Veränderungen der Zusammensetzung erheblichen Einfluss auf den Strahlungshaushalt der Erde. Bilden sich hier neue Partikel, entstehen daraus auch mehr Wolken. „Die Vorläufergase, die diesen Prozess der Partikelbildung antreiben, sind jedoch nicht gut verstanden“, betont Armin Hansel vom Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck, einer der Mitautor der aktuellen Studie. „Mit Experimenten, die unter den Bedingungen der oberen Troposphäre in der CLOUD-Kammer am CERN durchgeführt wurden, konnten wir nun zeigen, dass Salpetersäure, Schwefelsäure und Ammoniak gemeinsam Partikel bilden, und zwar mit einer Geschwindigkeit, die um Größenordnungen schneller ist, als wenn nur zwei der drei Komponenten miteinander reagieren“, schildert Hansel.

Welche Bedeutung dieser Mechanismus für die Wolkenbildung hat, hängt demnach von der vorhandenen Menge an Ammoniak ab. Bisher war man davon ausgegangen, dass Ammoniak beim Aufsteigen der Luftmassen ausgewaschen wird. Kürzlich wurden jedoch überraschend hohe Konzentrationen von Ammoniak und Ammoniumnitrat in der oberen Troposphäre über der asiatischen Monsun-Region beobachtet. Die Experimente in der Wolkenkammer zeigen nun, dass Ammoniak und Salpetersäure zusammen mit Spuren von Schwefelsäure rasch Kondensationskeime heranwachsen lassen. „Darüber hinaus zeigen unsere Messungen, dass diese Kondensationskeime auch hocheffiziente Eisnukleationspartikel sind, deren Effektivität mit Wüstenstaub vergleichbar ist“, erklärt Paul Winkler von der Forschungsgruppe Aerosolphysik und Umweltphysik an der Universität Wien. Die Modellrechnungen bestätigen, dass Ammoniak während des asiatischen Monsuns in großen Mengen in die obere Atmosphäre gelangt, dort mit Salpetersäure, die lokal durch Blitze entsteht, zusammen mit nur Spuren von Schwefelsäure rasch zur Bildung der beschriebenen Partikel führt. Dadurch entstehen bei den kühlen Temperaturen der oberen Troposphäre Eispartikel, die sich über die nördliche Hemisphäre ausbreiten können. „Die meisten Ammoniakemissionen in Südasien stammen aus der Landwirtschaft und hier vor allem aus der vermehrten Verwendung von Kunstdünger neben der natürlichen Düngung mit Mist“, sagt Winkler.

Tiroler Technologiepioniere

Für die CLOUD-Experimente hat die Innsbrucker Forschungsgruppe um Armin Hansel in enger Zusammenarbeit mit dem Spin-Off-Unternehmen Ionicon Analytik GmbH spezielle Messverfahren entwickelt. Das Team um Hansel gilt im Feld der Spurenanalytik als internationaler Pionier, da diese technische Innovation aus Tirol in Echtzeit Resultate mit extrem hoher Nachweisempfindlichkeit liefert. Das CLOUD-Forschungsteam besteht aus zahlreichen Arbeitsgruppen aus ganz Europa und Nordamerika und wird unter anderem von der Europäischen Union und zahlreichen nationalen Fördergebern – darunter der österreichischen Forschungsförderungsgesellschaft FFG – finanziell unterstützt.

Wissenschaftliche Ansprechpartner:

Armin Hansel
Institut für Ionenphysik und Angewandte Physik
Universität Innsbruck
T +43 512 507 52640
E armin.hansel@uibk.ac.at
W https://www.uibk.ac.at/ionen-angewandte-physik/umwelt/

Paul Winkler
Aerosolphysik und Umweltphysik
Universität Wien
T +43 1 4277 734 03
E paul.winkler@univie.ac.at
W https://aerosols.univie.ac.at/

Originalpublikation:

Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Mingyi Wang et al. Nature 2022, doi:10.1038/s41586-022-04605-4
https://www.nature.com/articles/s41586-022-04605-4

http://www.uibk.ac.at

Media Contact

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…