Kohlenstoff, verweile doch!

Ein neues Bild der Erde: Auf der Weltkarte ist eine relativ hohe Verweildauer daran zu erkennen, dass sich die Karte reliefartig nach oben wölbt. Grafik: Nature 2014/N. Carvalhais

Pflanzen spielen im globalen Klimasystem eine entscheidende Rolle – denn sie saugen das Treibhausgas Kohlendioxid aus der Luft und wandeln es in Kohlenhydrate um. So kann der Kohlenstoff viele Jahre oder sogar Jahrzehnte im Ökosystem gespeichert bleiben, bevor er wieder in CO2 umgewandelt wird und erneut in die Atmosphäre gelangt.

Die durchschnittliche Verweildauer des Kohlenstoffs liegt weltweit bei 23 Jahren, berichtet jetzt ein internationales Forscherteam unter Leitung von Nuno Carvalhais und Markus Reichstein vom Max-Planck-Institut für Biogeochemie in Jena in der Zeitschrift Nature. In den Tropen dauert es nur 15 Jahre, bis ein C-Atom wieder freigesetzt wird, in hohen Breiten dagegen 255 Jahre.

Eine überraschende Erkenntnis: Der Niederschlag spielt für die Verweildauer eine mindestens ebenso große Rolle wie die Temperatur. Die Forscher stellten zudem fest, dass in Landökosystemen insgesamt mehr Kohlenstoff gebunden ist als bislang gedacht – vor allem im Boden.

Landpflanzen sind ein Klimafaktor ersten Ranges: Sie saugen Jahr für Jahr etwa ein Viertel der menschlichen Treibhausgasemissionen aus der Luft. So werden etwa 120 Milliarden Tonnen Kohlenstoff jährlich zu Blättern, Wurzeln, Holz oder Samen, und schließlich, nach dem Tod der Pflanzen, zu Boden. Doch schließlich verrottet die Biomasse, und die organische Materie wird wieder zu CO2. Wie viel Zeit dieser Zyklus in unterschiedlichen Klimazonen in Anspruch nimmt, war bislang unklar.

„Wie lange ein Kohlenstoff-Atom im Ökosystem bleibt, ist für die Kohlenstoff-Bilanz entscheidend“, sagt Markus Reichstein, der am Max-Planck-Institut in Jena die Abteilung Biogeochemische Integration leitet. In Klimamodellen spielt die Bilanz des terrestrischen Teils des globalen Kohlenstoffzyklus eine wichtige Rolle. Doch wie die Landökosysteme auf die globale Erwärmung reagieren werden, gehört zu den größten Unsicherheiten derzeitiger Klimaprognosen. Werden Landpflanzen und Böden in Zukunft weiterhin zuverlässig überschüssigen Kohlenstoff aus der Atmosphäre speichern, oder dünsten sie bei wärmeren Temperaturen womöglich verstärkt Kohlendioxid aus – und werden damit von einer Kohlenstoff-Senke zur Quelle?

Landökosysteme speichern 2800 Milliarden Tonnen Kohlenstoff

Um die Prognosen zu verbessern, bestimmte das Team um Reichstein und seinen Kollegen Nuno Carvalhais die so genannte Umsatz- oder Verweildauer („Turnover Time“) von Kohlenstoff-Atomen in unterschiedlichen Ökosystemen und Klimazonen – also den Zeitraum, der von der Aufnahme eines Atoms durch die Photosynthese bis zur erneuten Freisetzung vergeht. Dafür kalkulierten die Forscher zunächst die Kohlenstoff-Menge, die global in Landpflanzen und Böden gespeichert ist.

Sie führten drei umfangreiche Datensätze zusammen, um den Kohlenstoffgehalt pro Quadratmeter weltweit mit einer Auflösung von 0,5 Grad geografischer Breite und Länge zu bestimmen. Erstmals erfassten die Forscher dabei den gesamten Kohlenstoffgehalt der Böden – und nicht nur die Menge im obersten Meter des Untergrundes, wie bisherige Studien. „Wir haben den Datensatz verbessert und erhalten so ein vollständigeres Bild“, betont Reichstein.

Der Studie zufolge speichern die Landökosysteme etwa 2800 Milliarden Tonnen Kohlenstoff – etwa 400 Milliarden Tonnen mehr als bisherige Untersuchungen ergeben hatten. Der Zuwachs ist vor allem auf ein Plus an organischer Materie in den Böden zurückzuführen. „Auch andere Studien haben kürzlich gezeigt, dass die Böden mehr Kohlenstoff enthalten, während oberirdisch eher weniger gespeichert ist als gedacht“, so Reichstein. Die größten Kohlenstoff-Speicher sind die Tropenwälder, gefolgt von den Wäldern im hohen Norden.

Die Forscher fanden zudem heraus, dass es im weltweiten Durchschnitt 23 Jahre lang dauert, bis ein Kohlenstoff-Atom, das durch die Photosynthese in einer Pflanze fixiert wurde, wieder zu Kohlendioxid wird. Die Analyse der Jenaer Forscher und ihrer Kollegen zeigt erstmals, wie die Verweildauer in verschiedenen Gegenden der Erde variiert. Am schnellsten gelangt der Kohlenstoff in Tropenwäldern und Savannen wieder in die Atmosphäre – im Schnitt nach 14 beziehungsweise 16 Jahren. In der arktischen Tundra dauert es dagegen etwa 65 Jahre, und in borealen Wäldern immerhin noch 53 Jahre, bis das Ökosystem ein einmal aufgenommenes Kohlenstoff-Atom wieder freigibt. Oberhalb von 75 Grad nördlicher Breite liegt die durchschnittliche Verweildauer gar bei 255 Jahren.

In warmen und feuchten Ökosystem verrottet Biomasse schneller

Wie erwartet, ist der Wert stark von der Temperatur abhängig: Je wärmer es ist, desto schneller zersetzt sich tote Biomasse. Doch als ebenso wichtig dafür, wie rasch der Kohlenstoff in einem Ökosystem umgesetzt wird, erwies sich der Niederschlag. Die Analysen der Forscher zeigen, dass die Verweildauer des Kohlenstoffs bei höherem Niederschlag sinkt. „Das ist durchaus plausibel, weil die Mikroorganismen, die beim Verrotten von Pflanzen eine Rolle spielen, Wasser für ihre Arbeit brauchen. In einer Wüste dauert es viel länger als im Regenwald, bis sich eine tote Pflanze zersetzt“, sagt Reichstein. Doch berücksichtigt wurde dieser Zusammenhang in globalen Klimamodellen bislang nicht gut genug. „Darauf muss in Zukunft ein stärkeres Augenmerk gelegt werden“, fordert der Jenaer Forscher.

Einen unerwarteten Zusammenhang zeigte die Studie bei den Savannen auf: Auch in den tropischen Grasländern nimmt die Verweildauer des Kohlenstoffs ab, je mehr Niederschlag fällt. Das ist allerdings unerwartet, da dort bei größerer Feuchtigkeit mehr Bäume wachsen. „Da Holz langlebig ist, würde man eigentlich erwarten, dass der Kohlenstoff dann länger im System bleibt“, sagt Reichstein. Eine mögliche Erklärung für das scheinbare Paradox besteht darin, dass es bei dichterem Baumbestand häufiger Feuer gibt, die den Kohlenstoff schneller wieder freisetzen.

Die Ergebnisse der Studie sollen dabei helfen, globale Klimamodelle zu verbessern. In welche Richtung sich Klimaprognosen durch die präzisere Kohlenstoff-Bilanzierung verändern werden, lässt sich derzeit aber noch nicht abschätzen. „Die eigentliche Neuigkeit unserer Arbeit sind die Karten der Kohlenstoff-Verteilung und der Verweilzeiten“, betont Markus Reichstein. „So ähnlich wie Astrophysiker, die eine fremde Welt entdecken, haben auch wir ein neues Bild unseres Planeten erhalten – nur eben unter der Oberfläche.“

Kontakt:
Prof. Dr. Markus Reichstein
MPI für Biogeochemie

Dr. Nuno Carvalhais
MPI für Biogeochemie
Tel: +49 3641 576-225
email: nuno.carvalhais@bgc-jena.mpg.de

Originalpublikation:
Global covariation of carbon turnover times with climate in terrestrial ecosystems
Nuno Carvalhais, Matthias Forkel, Myroslava Khomik, Jessica Bellarby, Martin Jung, Mirco Migliavacca, MingquanMu, Sassan Saatchi, Maurizio Santoro, Martin Thurner, Ulrich Weber, Bernhard Ahrens, Christian Beer, Alessandro Cescatti, James T. Randerson und Markus Reichstein
Nature, 25. September 2014; doi: 10.1038/nature13731

Media Contact

Dr. Eberhard Fritz Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Experte für verteilte Satellitensysteme

Kleine Satelliten, die Weltraummüll finden und einsammeln: Auf dieses Ziel arbeitet Mohamed Khalil Ben-Larbi hin. Er ist neuer Professor für Raumfahrtinformatik und Satellitensysteme an der Uni Würzburg. Die Menschheit hinterlässt…

BESSY II: Neues Verfahren für bessere Thermokunststoffe

Umweltfreundliche Thermoplaste aus nachwachsenden Rohstoffen lassen sich nach Gebrauch recyclen. Ihre Belastbarkeit lässt sich verbessern, indem man sie mit anderen Thermoplasten mischt. Um optimale Eigenschaften zu erzielen, kommt es jedoch…

Gesichert gesundes Krabbeln

Krankheitserreger in Insektenfarmen schnell erkennen. Es ist Bewegung gekommen in unsere Eiweißversorgung – Bewegung auf sechs Beinen: Insekten sind eine Proteinquelle, die zu erschließen in jeder Hinsicht ressourcenschonender ist als…