Wärmepuls in der Erdgeschichte
Ein Wärmepuls von etwa 5 bis 8 Grad Celsius vor 55,5 Millionen Jahren hatte tiefgreifende Änderungen in den Ozeanen und auf den Kontinenten zur Folge. Ein internationales Wissenschaftlerteam konnte nun zeigen, dass der Beginn dieses Temperaturmaximums durch zwei Ereignisse charakterisiert ist, bei denen große Mengen Kohlenstoff freigesetzt wurden. Ihre Ergebnisse wurden jetzt online im Wissenschaftsmagazin Nature Geoscience veröffentlicht.
In der Erdgeschichte gab es immer wieder relativ kurzfristige Phasen, in denen sich das globale Klima ungewöhnlich schnell aufheizte. Ein besonders extremes Ereignis fand vor etwa 55,5 Millionen Jahren statt, als die Temperaturen weltweit zwischen 5 und 8 Grad Celsius stiegen. Zu Beginn dieses Wärmepulses an der Grenze vom Paläozän zum Eozän wurden große Mengen an Kohlenstoff wahrscheinlich durch die Zersetzung von Methanhydraten freigesetzt, was im Ozean zu Versauerung und in der Atmosphäre zu einer enormen Verstärkung des Treibhauseffekts führte.
Die Ereignisse führten sowohl zum dramatischen Aussterben von kleinen, den Meeresboden besiedelnden kalkschaligen Einzellern als auch zu bedeutenden Veränderungen bei den großen Landtieren. Bisherige Schätzungen, über welche Zeiträume die Kohlenstoffmengen freigesetzt wurden, gehen weit auseinander: von weniger als zehn Jahren bis hin zu 20 000 Jahren. Hierzu liefert die aktuelle Nature Geoscience Studie neue Erkenntnisse.
„Unsere Ergebnisse zeigen, dass die Freisetzung des Kohlenstoffs nicht wie bisher angenommen in einem Schub, sondern in zwei gewaltigen und schnellen Impulsen ablief“, erklärt Dr. Ursula Röhl vom Zentrum für Marine Umweltwissenschaften (MARUM) an der Universität Bremen. Zusammen mit ihrem Bremer Kollegen Dr. Thomas Westerhold und ihren Kollegen aus den USA hatte sie den Zeitraum des Temperaturmaximums anhand von Bohrkernen genauer untersucht.
Dabei standen vor allem geochemische Untersuchungen und die zeitliche Einordnung im Fokus. „Beide Freisetzungsereignisse dauerten nicht länger als 1500 Jahre.“ Während der Kohlenstoffgehalt in der Atmosphäre nach dem ersten Impuls innerhalb weniger Jahrtausende wieder auf das Ausgangsniveau sank, dauerte es nach dem zweiten Impuls etwa 200 000 Jahre bis sich die Bedingungen wieder normalisierten.
Dieser extreme Temperaturanstieg an der Paläozän-Eozän-Grenze wird häufig als Fallbeispiel für den heutigen Klimawandel herangezogen. „Die Kohlenstoff-Freisetzung damals ähnelt den heutigen, vom Mensch verursachten Emissionen, so dass wir vom Klimawandel und den Änderungen in der Pflanzen- und Tierwelt vor 55,5 Millionen Jahren möglicherweise eine Menge über die Zukunft lernen können“, sagt Gabriel Bowen, Erstautor der Studie und Professor an der Universität Utah. Allerdings sei die Ausgangslage eine komplett andere als heutzutage gewesen; so gab es damals zum Beispiel keine Eisschilde auf der Erde.
Dass zum ersten Mal solch präzise Aussagen zum zeitlichen Ablauf des weltweit nachgewiesenen Temperaturmaximums gemacht werden konnten, ist dem besonderen Probenmaterial zu verdanken. Die Klimadaten konnten aus Bohrkernen gewonnen werden, die im sogenannten „Bighorn Basin“ im US-Bundesstaat Wyoming erbohrt wurden. Dort finden sich kontinentale Ablagerungen, die besonders umfangreich sind und daher geologische Zeiträume besonders fein auflösen. So können 1000 Jahre bis zu 50 Zentimeter Sediment entsprechen und ergeben im Vergleich zu Untersuchungen am selben Zeitabschnitt in der Tiefsee völlig neue Erkenntnisse. Gelagert werden diese Proben aus den USA mit einer Gesamtlänge von fast 1000 Metern im Bremer Bohrkernlager des International Ocean Discovery Program (IODP) am MARUM. Hier wurden die Kerne 2012 erstmals geöffnet, beschrieben, analysiert und beprobt, wozu ein 15-köpfiges internationales Wissenschaftlerteam für drei Wochen an die Weser reiste.
Publikation
Two massive, rapid releases of carbon during the onset of the Palaeocene–Eocene
thermal maximum
Gabriel J. Bowen, Bianca J. Maibauer, Mary J. Kraus, Ursula Röhl, Thomas Westerhold,
Amy Steimke, Philip D. Gingerich, Scott L.Wing and William C. Clyde
Veröffentlicht online am 15. Dezember 2014 in Nature Geoscience
(DOI: 10.1038/ngeo2316)
Weitere Informationen:
Dr. Ursula Röhl
Email: uroehl@marum.de
Dr. Thomas Westerhold
Email: twesterhold@marum.de
Media Contact
Alle Nachrichten aus der Kategorie: Geowissenschaften
Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.
Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…