Physiker erzeugen extremes UV-Licht: Ein Nieselregen im Laser-Gewitter
Für die Leiterplatten-Lithographie in der Chipindustrie werden Wege gesucht, um noch kleinere Strukturen in fotoempfindliches Oberflächenmaterial zu ätzen. Dazu ist Licht mit erheblich kürzeren Wellenlängen erforderlich, als das bisher verwendete. Eine international hochkompetetive Forschung sucht nach Wegen, um den Technologiesprung in der Chip-Herstellung einzuleiten. – In Jena gibt es einen sehr vielversprechenden Ansatz…
Ein merkwürdiges Experiment haben Laserphysiker der Uni Jena in ihrem Labor aufgebaut: Aus einer ultrafeinen Düse rieselt Wasser, rund eine Million Tropfen pro Sekunde, jeder genau 20 Mikrometer groß. Und mit ihrem Titan-Saphir-Hochleistungslaser, einem der stärksten überhaupt in Deutschland, schießen die Wissenschaftler Tropfen für Tropfen ab. Mit 18 Billionen Watt prasseln die Laserpulse auf den kalkulierten Nieselregen. Aber wozu das ganze? Eine Kirmesattraktion? – „Nein“, lacht Labor-Chef Prof. Dr. Roland Sauerbrey verstohlen, „wir produzieren extrem kurzes UV-Licht für den bevorstehenden Technologiesprung in der Chipindustrie.“ Kein Kinderspiel also: Es geht um den entscheidenden Durchbruch, der in wirtschaftlichen Maßstäben Milliardengewinne verspricht.
Bislang arbeiten Chiphersteller bei der Leiterplatten-Lithographie für Prozessoren und Speicherelemente noch mit vergleichsweise langwelligem Licht, das, mittels komplizierter Optik und tonnenschweren, hochreinen Linsen durch eine Maske fokussiert, auf die fotoempfindliche Oberfläche eines Halbleiter-Wavers mikroskopisch feine Leiterstrukturen ätzt. „Diese Technik ist ausgereizt“, weiß Sauerbrey, „will man noch kleinere Strukturen erzeugen, muss der Lichtfokus schärfer werden.“ Das geht aber, wie schon im 19. Jahrhundert der Jenaer Physiker Ernst Abbe in seiner Beugungs-Theorie berechnete, nur mit weitaus kurzwelligerem Licht.
Etwa bei 13,5 Nanometer Wellenlänge soll es rangieren; es ist für das menschliche Auge längst nicht mehr sichtbar und nur mit aufwändigem technischem Equipment zu produzieren. „Dafür gibt es eigentlich drei erfolgversprechende Konzepte“, erklärt Sauerbrey, „man kann mit großen und teuren Elektronensynchrotons arbeiten, mit leider ziemlich leistungsschwachen Entladungsquellen oder aber – indirekt – mit starken Laserpulsen.“ Klar, welchen Weg der Jenaer Laserexperte mit tatkräftiger Unterstützung der Jenoptik AG favorisiert.
Seit Jahren wissen Physiker, dass hochintensive Laserpulse, wenn sie auf Materie auftreffen, dort ein Plasma erzeugen. Hitze, Druck und vor allem die elektromagnetischen Kräfte wirken derart stark, dass die Elektronenbindungen beim Einschlag auseinander fliegen. Dabei werden auch – je nach chemischer Zusammensetzung des Zielmaterials – Photonen, also Lichtstrahlen unterschiedlicher Wellenlänge, frei. Will man extremes UV-Licht (EUV) zwischen 13 und 14 Nanometern Wellenlänge produzieren, eignen sich Lithium-Festkörper als Zielmaterial am besten.
„Das haben wir versucht, aber es ist für unsere Zwecke leider eine Sackgasse“, gesteht Sauerbrey. Denn das Material wird schnell verschlissen, und die auseinanderspritzenden Partikel verunreinigen die umgebende Optik. Die Lösung ist schließlich so einfach, dass man kaum darauf kommt. Die Jenaer Experimentalphysiker nehmen Wasser, H(tief)2O. Sauerbrey: „Dabei entsteht ionisierter Sauerstoff, O(hoch)5+, der genau die gewünschten Photonen emittiert.“ Das Abfallproblem (Debris) entschwindet als Wasserdampf, und der Nachschub rieselt stetig aus der Düse.
Nun arbeitet das Jenaer Expertenteam aus Prof. Roland Sauerbrey, Dr. Heinrich Schwörer, Wolfgang Ziegler, Christian Ziener und Stefan Düsterer „nur noch“ an der optimalen Modulation der Laser-Taktfrequenz, um eine maximale Ausbeute an EUV-Licht zu erzielen. „Wir sind ganz zuversichtlich, dass wir in einigen Jahren eine Lichtquelle für die Hochleistungs-Lithographie in Händen halten: mit 13,5 Nanometer Wellenlänge, 100 Watt Durchschnittsleistung und einer Taktfrequenz über sechs Kilohertz.“
Den Vorsprung der amerikanischen Konkurrenz haben die Jenaer Experimentalphysiker nahezu eingeholt. „Industriereif ist das Verfahren aber immer noch nicht, denn es fehlt noch die Optik, die unsere EUV-Strahlung auf den Halbleiter-Waver fokussiert“, weiß Sauerbrey. Eine hochkomplexe Apparatur wird erforderlich sein, die Komplett-Lösung kann nur ein internationales Konsortium aus Wissenschaft und Industrie entwickeln. „Zumindest sind wir Europäer wieder im Rennen“, freut sich der Jenaer Wissenschaftler, „in zehn Jahren müssten wir es schaffen.“
Dann verfinstert sich seine Miene. Scheitert das hochambitionierte Forschungsgroßprojekt, so werden künftig nur noch Japaner und US-Amerikaner die Anlagen für die Chipindustrie bauen. Und das kostet Milliardenumsätze und Arbeitsplätze – auch in Deutschland. Eine Phalanx an Hightech-Firmen steht deshalb als Partner bereit; die bundesweite Koordination soll in Kürze das Bonner Wissenschaftsministerium übernehmen.
Ansprechpartner:
Prof. Dr. Roland Sauerbrey
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Tel.: 03641/947200, Fax: 947202
E-Mail: sauerbrey@qe.physik.uni-jena.de
Friedrich-Schiller-Universität
Referat Öffentlichkeitsarbeit
Dr. Wolfgang Hirsch
Fürstengraben 1
07743 Jena
Tel.: 03641/931031
Fax: 03641/931032
E-Mail: h7wohi@sokrates.verwaltung.uni-jena.de
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…