Durchbruch für Photonik-Chips: Licht emittierende Silizium-Germanium-Legierungen

Nanodrähte aus Germanium-Silizium-Legierung mit hexagonalem Kristallgitter können Licht erzeugen. Sie könnten direkt in die gängigen Prozesse der Silizium-Halbleitertechnologie integriert werden. Elham Fadaly / TU/e

Elektronische Chips heizen sich auf, wenn Daten übertragen werden. Der Laptop auf den Knien wird warm; Rechenzentren benötigen Kühlaggregate mit Megawatt-Leistung. Abhilfe schaffen könnte die Photonik, denn Lichtpulse erzeugen keine Abwärme.

Seit 50 Jahren bemüht sich die Forschung daher, Laser aus Silizium oder Germanium zu bauen. Bisher vergeblich. Silizium, das Arbeitspferd der Chip-Industrie, kristallisiert normalerweise in einem kubischen Kristallgitter. In dieser Form ist es für die Umwandlung von Elektronen in Licht nicht geeignet.

Zusammen mit Kolleginnen und Kollegen der Technischen Universität München sowie der Universitäten in Jena und Linz ist es Forschenden der Technischen Universität Eindhoven nun gelungen, Legierungen aus Germanium und Silizium zu entwickeln, die Licht emittieren können.

Entscheidend dafür war es, Germanium und Legierungen aus Germanium und Silizium mit hexagonalem Kristallgitter zu erzeugen. „Dieses Material hat eine direkte Bandlücke und kann daher selbst Licht erzeugen“, sagt Prof. Jonathan Finley, Professor für Halbleiter-Nanostrukturen und -Quantensysteme an der TU München.

Der Trick mit dem Template

Schon 2015 gelang es Prof. Erik Bakkers und seinem Team an der TU Eindhoven, hexagonales Silizium zu erzeugen. Dafür züchteten sie zunächst Nanodrähte aus einem anderen Material mit einer hexagonalen Kristallstruktur und überzogen diese mit einer Schicht aus Germanium und Silizium. Das darunter liegende Material zwang dabei auch der Germanium-Silizium-Legierung eine hexagonale Struktur auf.

Doch die Strukturen ließen sich zunächst nicht zum Leuchten anregen. Im Austausch mit den Kollegen am Walter Schottky Institut der Technischen Universität München, die während der Optimierung Generation für Generation die optischen Eigenschaften analysierten, gelang es schließlich das Herstellungsverfahren so zu verbessern, dass die Nanodrähte schließlich tatsächlich Licht ausstrahlen konnten.

„Inzwischen haben wir optische Eigenschaften erzielt, die fast mit Indiumphosphid oder Galliumarsenid vergleichbar sind“, sagt Bakkers. Einen Laser aus Germanium-Silizium-Legierungen zu bauen, der noch dazu in die gängigen Herstellungsprozesse integriert werden kann, erscheint damit nur noch eine Frage der Zeit.

„Wenn wir die elektronische Kommunikation auf einem Chip und von Chip zu Chip optisch erledigen können, so kann das die Geschwindigkeit um einen Faktor von bis zu 1000 erhöhen, sagt Jonathan Finley.

„Darüber hinaus könnten durch die direkte Kopplung von Optik und Elektronik Chips für laserbasiertes Radar für selbstfahrende Autos, für chemische Sensoren zur medizinischen Diagnose oder zur Messung der Luft- und Lebensmittelqualität dramatisch günstiger werden.“

Das Forschungsprojekt wurde unterstützt aus Mitteln des EU-Projekts SiLAS, des Marie Sklodowska Curie-Programms der EU, der Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), der Solliance Initiative des Energy research Centre of the Netherlands (ECN), des Holst Centers, der TU/e, der Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek (TNO), des Interuniversity Microelectronics Centre (IMEC), des Forschungszentrum Jülich und der niederländischen Provinz Nordbrabant.

Das Deutsche Elektronen Synchrotron (DESY) Hamburg stellte Messzeit am Speicherring PETRA III zur Verfügung. Theoretische Berechnungen wurden auf dem SuperMUC Höchstleistungsrechner des Leibniz Supercomputing Center in Garching bei München.

Prof. Dr. Jonathan J. Finley
Walter Schottky Institut und Physik-Department
Technische Universität München
Am Coulombwall 4, 85748 Garching
Tel.: +49 89 289 12770 – E-Mail: jonathan.finley@wsi.tum.de

Direct Bandgap Emission from Hexagonal Ge and SiGe Alloys
E. M. T. Fadaly, A. Dijkstra, J. R. Suckert, D. Ziss, M. A. J. v. Tilburg, C. Mao, Y. Ren, V. T. v. Lange, S. Kölling, M. A. Verheijen, D. Busse, C. Rödl, J. Furthmüller, F. Bechstedt, J. Stangl, J. J. Finley, S. Botti, J. E. M. Haverkort, E. P. A. M. Bakkers.
Nature, 8. April 2020 – DOI: 10.1038/s41586-020-2150-y

https://www.nature.com/articles/s41586-020-2150-y Originalpublikum (sichtbar nach Ablauf der Sperrfrist)
https://www.wsi.tum.de/views/groups.php?group=finley Homepage der Arbeitsgruppe von Prof. Finley
https://www.tue.nl/en/research/researchers/erik-bakkers/ Homepage der Arbeitsgruppe von Prof. Bakkers
https://www.silasproject.eu/ Website des SiLAS-Projekts

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine: Neuer Ansatzpunkt für die Krebsforschung

Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von Krebs bei Kindern könnte diese…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…