Idealgrösse eines Computer-Speicherelements
CBRAMs (Conductive Bridging Random Access Memories) könnten eine zukunftsweisende Lösung der Speicherproblematik sein, da sich in ihnen Daten nahezu permanent speichern lassen. Um sie möglichst klein und energiesparend zu gestalten, muss genau bekannt sein, wie sie sich auf atomarer Ebene verhalten.
Das Team von Mathieu Luisier, ausserordentlicher Professor an der ETH Zürich, befasst sich mit dieser Art von Speichern aus zwei Metall-Elektroden, getrennt durch einen Halbleiter. Im Team wurde ein numerisches Computermodell eines CBRAM entwickelt; es besteht aus rund 4500 Atomen und unterliegt den für die mikroskopische Welt massgeblichen Gesetzen der Quantenmechanik. Diese Simulation auf atomarer Nanoebene ermöglicht eine präzise Beschreibung der Stärke des von einem Nano-Metallfaden erzeugten Stroms, der sich zwischen den Elektroden auf- oder abbaut.
Ein knappes Dutzend Atome dick
„Dies ist ein enormer Fortschritt“, betont Luisier, SNF-Förderprofessor von 2011 bis 2016 an der ETH Zürich. „Bis anhin umfassten die bestehenden Modelle rund einhundert Atome.“ Das neue Modell generiert ein realistisches Bild des elektrischen Stroms sowie der vom Speicherelement abgegebenen elektrischen Leistung, sodass sich ihre Temperatur berechnen lässt. Veränderungen der einzelnen Parameter der Speicherlösung ermöglichen es den Forschenden, die Auswirkungen von verschiedenen Halbleiterdicken und unterschiedlich starken Metallfäden zu beobachten.
Die an der IEDM-Konferenz in San Francisco im Dezember 2017 vorgestellten Arbeiten belegen, dass der lokale Energieverbrauch und die Erhitzung sinken, wenn man die beiden Elektroden einander annähert (*). Dies gilt bis zu einem gewissen Punkt: Eine zu grosse Nähe der Elektroden kann den quantenmechanischen Tunneleffekt zur Folge haben, sodass sich der Stromfluss zwischen ihnen nicht mehr steuern lässt.
Die Arbeiten zeigen so die Idealgeometrie eines CBRAM-Speichers auf: ein Halbleiter von 1,5 bis 2 Nanometern Dicke, was knapp einem Dutzend Atomen entspricht. Nach wie vor ist die Herstellung solcher Speicher aber nicht ganz einfach: Maschinen, die in derartig kleinen Dimensionen arbeiten können, bedienen sich einer Technik zur Atomverdampfung, die sich derzeit nur schwer mit einer Massenproduktion vereinbaren lässt.
„Der Kanal eines handelsüblichen CMOS-Transistors misst heutzutage rund 20 Nanometer und ist somit zehnmal breiter als der Halbleiter der untersuchten CBRAMs“, wie Luisier ausführt. „Es könnte daher sein, dass das mooresche Gesetz – das davon ausgeht, dass sich die Grösse elektronischer Bauteile alle 18 bis 24 Monate halbiert – in den nächsten zehn Jahren endgültig ausser Kraft gesetzt wird.“
Zum Bau des 4500-Atom-Modells stand den Forschenden ein äusserst leistungsstarker Computer namens Piz Daint zur Verfügung – weltweit steht der im Nationalen Hochleistungsrechenzentrum CSCS in Lugano stehende Rechner an dritter Stelle; er ist in der Lage, pro Sekunde über 20 Millionen Milliarden Rechenoperationen zu verarbeiten.
Um eine solche Studie durchzuführen, braucht es mindestens 230 modernste Grafikkarten. Piz Daint umfasst über 4000 solcher Karten, die jeweils mit einem eigenen CPU-Prozessor verbunden sind, „Selbst bei einer derart starken Rechenleistung nehmen die Simulation und die Bestimmung der elektrischen Eigenschaften eines solchen Speichers mehrere Stunden in Anspruch“, erklärt Luisier.
(*) F. Ducry et al.: Ab-initio Modeling of CBRAM Cells: from Ballistic Transport Properties to Electro-Thermal Effects. Proceedings of the IEDM Conference 2017.
Diese Arbeiten wurden durch den SNF, die Werner Siemens-Stiftung, einen ETH Research Grant und das Nationale Hochleistungsrechenzentrum CSCS gefördert.
Unterstützung für den wissenschaftlichen Nachwuchs
Der SNF lanciert ein neues Förderungsinstrument, um Wissenschaftler auf dem Weg zur Professur zu unterstützen. Mit einem SNSF Eccellenza Grant können Assistenzprofessorinnen und Assistenzprofessoren mit Tenure Track ein eigenes Forschungsteam auf die Beine stellen und ein ambitioniertes wissenschaftliches Projekt leiten. Ein SNSF Eccellenza Professorial Fellowship finanziert den Lohn der Assistenzprofessur und die Projektkosten. Eccellenza ersetzt die SNF-Förderungsprofessuren. Dieses Instrument hat seit 2000 691 Forschende unterstützt und zwar mit grossem Erfolg: 80% der Beitragsempfangenden sicherten sich in der Folge eine Professur in der Schweiz oder im Ausland.
Kontakt
Prof. Mathieu Luisier
Integrated Systems Laboratory, ETH Zurich
CH-8092 Zürich
Telefon: +41 44 632 53 33 oder +41 79 454 93 78
E-Mail: mluisier@iis.ee.ethz.ch
http://www.snf.ch/de/fokusForschung/newsroom/Seiten/news-171204-medienmitteilung…
https://iis-people.ee.ethz.ch/~mluisier/iedm_abstract_ducry.pdf
http://www.snf.ch/de/foerderung/karrieren/eccellenza/Seiten/default.aspx
http://p3.snf.ch/Project-159314 'Projet: Physics-based Modeling of Electronic Devices at the Nanometer Scale'
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…