KI für mehr Durchblick – AuRoRaS entwickelt Radarsensoren für das sichere autonome Fahren

Beispielhafte Darstellung der Fahrzeug-Umfelderfassung mittels Lidar (links oben), Radar (rechts oben) und Kamera (unten) DFKI

In dem Forschungsvorhaben AuRoRaS – Automotive Robust Radar Sensing – sollen neue Simulationsverfahren und Methoden der Künstlichen Intelligenz entwickelt werden, um Radarsysteme effizienter und das autonome Fahren sicherer zu machen.

Drei Partner aus Forschung und Technologie arbeiten im Rahmen des Förderprogramms KMU-innovativ des Bundesministeriums für Bildung und Forschung (BMBF) daran, die Messqualität von hochauflösenden Radarsensoren dahingehend zu verbessern.

Bessere Radarsensorik durch KI

In den nächsten beiden Jahren werden die Astyx GmbH (Projektkoordination), die BIT Technology Solutions GmbH und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) ein automotive Radarsystem für den Einsatz beim hochautomatisierten (Level 4) und autonomen Fahren (Level 5) realisieren.

Das Konsortium möchte damit die Qualität der Messdaten des sogenannten Dauerstrichradars signifikant erhöhen. Bei dieser Radartechnologie werden während der Messung ununterbrochen Radarsignale ausgestrahlt und die Reflektionen gemessen.

In der Automobilindustrie sind Radarsensoren bereits stark verbreitet. Der große Vorteil gegenüber kamerabasierten Verfahren oder Laser-Sensoren (Lidar) ist die direkte Messung der Objektgeschwindigkeit und die Robustheit vor Wettereinflüssen wie Nebel oder Schnee. Nachteile sind mögliche Fehler bei der Signalverarbeitung.

Diese können durch Geschwindigkeitsmehrdeutigkeiten oder die sogenannte Mehrwegeausbreitung – beispielsweise aufgrund der reflektierenden Straßenoberfläche – entstehen,. Bei automatisierten oder autonomen Fahrfunktionen ist jedoch eine sehr hohe Genauigkeit und Robustheit zwingend erforderlich. Im Projekt sollen die physikalisch bedingten Nachteile von Radar-Sensoren durch innovative KI-Methoden erkannt und beseitigt werden.

Hochauflösende Radargeräte und Software-gestützte Objekterkennung

Die Astyx GmbH steuert neben ihren hochauflösenden Radargeräten auch das Spezialistenwissen in der Software-gestützten Objekterkennung bei.

Dieses Know-how in den Bereichen 3D Objekterkennung aus Radarpunktwolken und Deep Learning-basierter Objekterkennung soll genutzt werden, um die KI-basierte Punktwolkenextraktion aus den Radar-Rohdaten zu verbessern.

Außerdem entwickelt Astyx die synchronisierte Datenaufzeichnung, die geometrische Kalibrierung der Sensoren und die Entwicklung der Datenschnittstellen und Werkzeuge zum Annotieren der realen Trainings- und Testdaten.

Simulation der Radarsensordaten

Die BIT Technology Solutions GmbH entwickelt eine synthetische, physikalisch basierende Simulation der Radarsensordaten sowie die benötigten Referenzdaten (Ground Truth). Diese Simulationsumgebung dient als Basis für ein skalierbares und effizientes Training der KI und das qualitative Absichern der KI-Algorithmen.

Das Konzept der BIT Technology Solution GmbH ermöglicht die Forschung im Bereich der Simulation des gesamten Spektrums elektromagnetischer Wellen und die anschließende Generierung entsprechender synthetischer Daten für Training und Validierung.

Durch Kombination von simulierten und realen Radarmessdaten wird die Genauigkeit und Robustheit der KI-Methoden bei der Bereinigung der Messdaten und damit auch die darauf aufbauenden Umfelderkennung eines autonomen Fahrzeugs erheblich verbessert.

Merkmalsextraktion mit tiefen neuronalen Netzen

Das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) übernimmt aufgrund seiner Erfahrungen auf dem Gebiet des Maschinellen Lernens einen Großteil der Verbesserung der Datenqualität durch neu zu erforschende Signalverarbeitungsschritte mittels tiefer Neuronaler Netze.

Diese Lernverfahren benötigen eine große repräsentative Datenbasis, die sonst nur sehr aufwendig und kostspielig mit Realdaten vollständig abgedeckt werden könnte. Der Effekt der Mehrwegeausbreitung bei der Radarmessung soll durch maschinelle Lernverfahren erkannt und kompensiert werden. Dabei werden die Messdaten des Radar-Sensors mithilfe von Neuronalen Netzen analysiert und falsche Werte anschließend entfernt.

Partner:
Astyx GmbH
BIT Technology Solutions GmbH
DFKI

Dr.-Ing. Oliver Wasenmüller
Teamleiter Machine Vision and Autonomous Vehicle,
FB Erweiterte Realität, DFKI GmbH
Oliver.Wasenmueller@dfki.de

Media Contact

Udo Urban DFKI Kaiserslautern idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.dfki.de

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…