Maschinelles Lernen – Wie technische Systeme aus wenigen Beispielen lernen können
Induktive Programmierung heißt die Methode, mit der sich die Leiterin der Forschungsgruppe Kognitive Systeme (Uni Bamberg) beschäftigt. Sie erforscht, wie Programme aus Ein-/Ausgabe-Beispielen oder beobachteten Eingabefolgen in einem System lernen.
Die Methode ergänzt aktuelle Blackbox-Ansätze des „Deep Learning“, einem Teilgebiet des Maschinellen Lernens, das künstliche neuronale Netze einsetzt und viele Trainingsdaten benötigt. Außerdem ermöglicht sie, Hintergrund- und Expertenwissen zu berücksichtigen.
Benötigt werden solche Verfahren beispielsweise bei medizinischen Diagnosen oder in der industriellen Produktion, wo nur wenige Daten auf einmal vorliegen, die sich zum Training eines Modells nutzen lassen. Ein weiterer Anwendungsbereich ist das sogenannte Data Wrangling: Hier geht es um Unterstützung bei der Bereinigung und Transformation komplexer Datensätze.
Menschliche Hilfe benötigt
Die große Herausforderung für den Einsatz von ML liege darin, dass die meisten Ansätze sehr viele korrekt vorklassifizierte Trainingsbeispiele benötigen. Seien die Daten, mit denen gelernt wird, falsch vorklassifiziert, werde dementsprechend auch das gelernte Programm fehlerhaft sein.
In manchen Anwendungsbereichen, etwa der medizinischen Diagnose, gibt es oft gar keine sogenannte ground truth – das heißt, auch ein Experte kann nur nach bestem Wissen einschätzen, welche Diagnose korrekt wäre.
„Ich gehe davon aus, dass es für viele praktische Anwendungen notwendig wird, interaktive Ansätze des Maschinellen Lernens zu nutzen oder zu entwickeln, da es gar nicht möglich oder sehr teuer ist, Trainingsdaten ohne menschliche Hilfe korrekt zu kennzeichnen“, prognostiziert Schmid.
Forschungspartnerschaft mit fortiss
Prof. Ute Schmid lehrt Künstliche Intelligenz und Maschinelles Lernen an der Universität Bamberg. Ihr Schwerpunkt liegt auf induktiver Programmierung, interpretierbarem und menschenähnlichem (human-level) maschinellem Lernen sowie der Generierung von Erklärungen für gelernte Modelle (Klassifikatoren). Prof. Schmid wird bei fortiss in das Leitprojekt Robuste KI und im IBM fortiss Center for AI eingebunden.
Über fortiss
fortiss ist das Forschungsinstitut des Freistaats Bayern für softwareintensive Systeme und Services mit Sitz in München. Das Institut beschäftigt derzeit rund 150 Mitarbeiter, die in Forschungs-, Entwicklungs- und Transferprojekten mit Universitäten und Technologie-Firmen in Bayern, Deutschland und Europa zusammenarbeiten.
Schwerpunkte sind die Erforschung modernster Methoden, Techniken und Werkzeuge der Softwareentwicklung, des Systems- & Service-Engineering und deren Anwendung auf kognitive cyber-physische Systeme wie das Internet of Things (IoT). fortiss ist in der Rechtsform einer gemeinnützigen GmbH organisiert. Gesellschafter sind der Freistaat Bayern (Mehrheitsgesellschafter) und die Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Prof. Dr. Ute Schmid
Universität Bamberg – Forschungsgruppe Kognitive Systeme
fortiss Research Fellow
Tel. +49 (951) 863 2860
E-Mail: ute.schmid@uni-bamberg.de
https://www.fortiss.org/aktuelles/details/kuenstliche-intelligenz
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…