Material, hör zu!
„Sieben, eins, neun, …“: Eine menschliche Stimme spricht Ziffern, ein Material erkennt diese zu rund 97 Prozent korrekt.
Entwickelt wurde das System zur Mustererkennung von Physiker:innen der Universität Duisburg-Essen (UDE) in Zusammenarbeit mit der Universität Gent (Belgien). Mit der Entwicklung ließen sich mehrdimensionale Probleme energiesparend, ohne aufwendiges Training und zügig lösen. Das Fachmagazin Advanced Intelligent Systems berichtet.
Kann ein Material schnell und effizient Muster erkennen? Diese Frage stellte sich ein Team aus der Theoretischen Physik, geleitet von Professorin Dr. Karin Everschor-Sitte. Den Beleg, dass es funktioniert, erbrachten die Forschenden anhand von Spracherkennung.
Das Team um Erstautor Robin Msiska nutzte Audioaufnahmen der gesprochenen Ziffern 0 bis 9 aus einer Standard-Datenbank. Die Physiker:innen analysierten, zu welchem Zeitpunkt des gesprochenen Worts welche Frequenzen wie intensiv beteiligt sind. Diese Informationen wandelten sie in Spannungssignale um, die sie über 39 Kontakte an einen dünnen magnetischen Film anlegten.
In diesem Material befinden sich kleine magnetische Wirbel (Skyrmionen), die auf die Spannung reagieren, indem sie sich verformen: „Vereinfacht kann man sich das vorstellen wie ein schwarz-weißes Muster, das seine Formen ändert“, verdeutlicht Msiska. So bildet das Material für jede gesprochene Zahl ein individuelles Muster ab, das anschließend wie ein QR-Code von einem simplen Rechner linear ausgelesen werden kann.
Die aufwendigen Simulationen hierzu wurden weitgehend im flämischen Supercomputerzentrum (Vlaams Supercomputer Centrum) in Zusammenarbeit mit der Universität Gent durchgeführt: 97,4 Prozent der Zahlen erkannte das System korrekt; untersuchte man ausschließlich Frauenstimmen, stieg der Wert auf 98,5 Prozent. „Damit zeigt es die beste Leistung, die jemals für In-Material-Reservoir-Computer berichtet wurde“, freut sich Everschor-Sitte. Und das auf kleinstem Raum: Gerade mal einen Mikrometer Kantenlänge hat das Stück, mit dem die Physiker:innen gearbeitet haben.
„Verwendet man ein neuronales Netz, ist das Training teuer und benötigt enorme Datensätze. Unser Materialsystem kann Probleme des maschinellen Lernens lösen, ohne ein System aus Millionen miteinander verbundener Neuronen aufbauen zu müssen – die hier gezeigte Spracherkennung ist nur ein Beispiel. Das geht schneller und verbraucht weniger Energie“, erklärt die Physikerin.
Anwendungsfelder sieht sie überall, wo es gilt, verschiedene Signale zu erkennen und zu interpretieren: beim autonomen Fahren, in der Wettervorhersage oder auch in der Medizin. In Zusammenarbeit mit anderen Forschenden der UDE steht derzeit eine medizinische Standarduntersuchung im Mittelpunkt: Das Elektroenzephalogramm (EEG), das die elektrische Aktivität des Gehirns misst. Die Physiker:innen erforschen, ob das magnetische System dessen Ergebnisse eigenständig interpretieren kann.
Redaktion: Birte Vierjahn, Tel. 0203/37 9-2427, birte.vierjahn@uni-due.de
Wissenschaftliche Ansprechpartner:
Prof. Dr. Karin Everschor-Sitte, Theoretische Physik, Tel. 0203/37 9-4720, karin.everschor-sitte@uni-due.de
Originalpublikation:
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln
Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…
Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne
Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…
Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten
Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….