Mikroskopisches «Deep Learning» sagt Virusinfektionen voraus

Deep Learning erkennt Virusinfektionen und sagt akute, schwere Ausbrüche voraus.
Universität Zürich

Infizieren Viren eine Zelle, führt dies zu Veränderungen des Zellkerns, die mittels Fluoreszenzmikroskopie visualisiert werden können. Forschende der Universität Zürich haben ein künstliches neuronales Netzwerk mit derartigen Bildern so trainiert, dass der Algorithmus zuverlässig diejenigen Zellen erkennt, die von Adeno- oder Herpesviren befallen sind. Zudem identifiziert er akute, schwere Infektionen bereits im Voraus.

Adenoviren können beim Menschen die Zellen der Atemwege befallen, Herpesviren jene der Haut und des Nervensystems. In den meisten Fällen führt dies nicht zur Produktion neuer Viruspartikel, da die Viren vom Immunsystem abgefangen werden. Adeno- und Herpesviren können jedoch dauerhafte, persistente Infektionen verursachen, die nur unvollständig vom Abwehrsystem kontrolliert werden und über Jahre Viruspartikel produzieren. Dieselben Viren können auch zu plötzlichen, heftigen Infektionen führen, bei denen betroffene Zellen grosse Mengen an Viren freisetzen und zu Infektion führen, die sich rasch ausbreiten. Die Folgen sind schwerwiegende akute Erkrankungen der Lunge oder des Nervensystems.

Virusbefallene Zellen automatisch erkennen

Die Forschungsgruppe von Urs Greber, Professor am Institut für Molekulare Biologie der Universität Zürich (UZH), zeigt nun erstmals, dass ein maschinell lernender Algorithmus jene Zellen, die mit Herpes- oder Adenoviren infiziert sind, allein anhand der Fluoreszenz des Zellkerns erkennen kann.

«Unsere Methode identifiziert nicht nur zuverlässig virusinfizierte Zellen, sondern erkennt mit hoher Genauigkeit auch virulente Infektionen im Voraus», sagt Greber. Die Studienautoren sind überzeugt, dass ihre Entwicklung vielseitig anwendbar ist – etwa für Vorhersagen, wie menschliche Zellen auf andere Viren oder Mikroorganismen reagieren. «Das Verfahren eröffnet neue Wege, um Infektionen besser zu verstehen und um neue Wirkstoffe gegen Krankheitserreger wie Viren oder Bakterien zu entdecken», ergänzt Greber.

Die Analysemethode basiert auf der Kombination von Fluoreszenzmikroskopie in lebenden Zellen und dem sogenannten «Deep Learning». Die Herpes- und Adenoviren, die im Innern einer infizierten Zelle gebildet werden, verändern die Organisation des Zellkerns, und diese Veränderungen können mit dem Mikroskop visualisiert werden. Um sie maschinell zu detektieren, verwendet die Gruppe einen «Deep Learning»-Algorithmus, ein sogenanntes künstliches neuronales Netzwerk. Dieses Netzwerk wird mit einer grossen Menge an Mikroskopiebildern trainiert und extrahiert Muster, die für infizierte oder nicht infizierte Zellen charakteristisch sind. «Nach Abschluss von Training und Validierung erkennt das neuronale Netzwerk virusinfizierte Zellen automatisch», so Greber.

Akute schwere Infektionen zuverlässig voraussagen

Die Wissenschaftler zeigen zudem, dass der Algorithmus auch fähig ist, akut auftretende und heftig verlaufende Infektionen mit einer Genauigkeit von 95 Prozent und bis zu 24 Stunden im Voraus zu identifizieren. Als Trainingsmaterial dienen Bilder lebender Zellen von sogenannt lytischen Infektionen, bei der sich die Viruspartikel explosionsartig vermehren und sich die Zellen auflösen, sowie Bilder von persistenten Infektionen, bei denen Viren zwar kontinuierlich, aber nur in geringen Mengen produziert werden. Trotz der grossen Präzision ist noch offen, welche Merkmale infizierter Zellkerne das künstliche neuronale Netzwerk eigentlich erkennt, um die zwei Infektionsphasen zu unterscheiden. Es erlaubt aber schon jetzt, die Infektionsbiologie infizierter Zellen genauer zu untersuchen.

Einige Unterschiede hat die Gruppe bereits entdeckt: Der Innendruck des Zellkerns ist bei virulenten Infektionen grösser als während persistenten Phasen. Zudem reichert eine Zelle mit lytischer Infektion die viralen Proteine schneller im Zellkern an. «Wir vermuten daher, dass ausgeklügelte zelluläre Prozesse bestimmen, ob sich eine Zelle nach dem Virenbefall auflöst oder nicht. Diesen und weiteren Fragen können wir nun nachgehen», sagt Greber.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Urs Greber
Institut für Molekulare Biologie
Universität Zürich
Tel. +41 44 635 48 41
E-Mail: urs.greber@mls.uzh.ch

Originalpublikation:

Vardan Andriasyan, Artur Yakimovich, Anthony Petkidis, Fanny Georgi, Robert Witte, Daniel Puntener & Urs F. Greber. Microscopy deep learning predicts virus infections and reveals mechanics of lytic infected cells. iScience. 25 June 2021. DOI: 10.1016/j.isci.2021.102543

Weitere Informationen:

https://www.media.uzh.ch/de/medienmitteilungen/2021/Virusinfektionen.html

Media Contact

Kurt Bodenmüller Kommunikation
Universität Zürich

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…