Mit maschinellen Lernverfahren Anomalien frühzeitig erkennen und Schäden vermeiden
Dazu benötigt das System aber zuerst eine stabile Anlernphase, in der es alle möglichen Normalzustände kennenlernt. Bei Windkraftanlagen oder Brücken ist das nur sehr eingeschränkt möglich, da sie unter anderem stark schwankenden Wetterlagen ausgesetzt sind.
Darüber hinaus sind in der Regel nur wenige Daten zu anomalen Ereignissen verfügbar. Dadurch kann das System die Ausnahmezustände nicht kategorisieren.
Dies wäre aber wichtig, um zu erkennen, wie gefährlich die jeweiligen Normabweichungen sind. Genau diese beiden Probleme sollen im Projekt »Maschinelle Lernverfahren für Stochastisch-Deterministische Multi-Sensor Signale« (MADESI) gelöst werden.
Mit Hilfe numerischer Simulationen können alle erdenklichen Szenarien annäherungsweise durchgespielt werden. So kann beispielsweise simuliert werden, was passiert, wenn starke Sturmböen auf ein Windrad treffen. Das Monitoring-System könnte dann mit den bei diesen Simulationen erzeugten Daten angelernt werden und anschließend selbstständig Anomalien erkennen und interpretieren.
Dafür entwickeln die Forscher im Projekt MADESI Verfahren, die Simulationsdaten für maschinelle Lernverfahren nutzbar machen. Dabei soll zum einen die Komplexität der Simulationsdaten verringert werden, damit das Monitoring-System zusätzlich auch mit realen Sensordaten angelernt werden kann.
Zum anderen will das Konsortium auch die Interpretierbarkeit der Monitoring-Daten erhöhen. »Um das zu erreichen, arbeiten wir bei SCAI unter anderem an Data-Mining-Methoden, mit denen wir Muster in den Szenario-Daten erkennen«, erklärt Projektleiter Prof. Dr. Jochen Garcke, Abteilungsleiter »Numerische datenbasierte Vorhersage« bei Fraunhofer SCAI.
Dabei suche man auch nach Merkmalen für Schädigungsvorgänge oder für das Erkennen von Eis auf Windrädern.
Neben SCAI und der Technischen Universität Darmstadt sind auch die Unternehmen Weidmüller Monitoring Systems und ZF Friedrichshafen beteiligt. Letztere stellen echte Sensordaten zur Verfügung, um die neu entwickelten methodischen Ansätze zu testen.
Am 21. November 2018 wollen sich die Mitwirkenden auf Schloss Birlinghoven zum Auftakttreffen versammeln. Gefördert wird das dreijährige Projekt durch das Programm »IKT 2020 – Forschung für Innovationen« des Bundesministeriums für Bildung und Forschung (BMBF).
Ansprechpartner:
Prof. Dr. Jochen Garcke
Abteilungsleiter »Numerische datenbasierte Vorhersage«
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI, Schloss Birlinghoven, 53754 Sankt Augustin
Telefon +49 2241 14-2286, Fax +49 2241 14-2460
E-Mail: jochen.garcke@scai.fraunhofer.de
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut
Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…
Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half
Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…
Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können
Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…