NANOSEC2: Sicherere „Fingerabdrücke“ durch mehr Zufall

Prof. Dr. Stefan Katzenbeisser, Inhaber des Lehrstuhls für Technische Informatik an der Universität Passau.
(c) Universität Passau

Bei der Fertigung von Chips für Sensoren entstehen minimale, ungewollte Abweichungen, die den Chip einzigartig machen und als „Fingerabdruck“ zur Identifikation dienen können. Im DFG-Projekt NANOSEC2 untersuchen Forschende der Universität Passau, wie diese Fingerabdrücke verbessert werden können, sodass sie mehr Zufall und weniger Fehler enthalten.

Ob Thermostat an der Heizung, Roboter in der Industrie oder Messgerät im Flugzeug: Viele Systeme unseres Alltags sind mit Sensoren ausgestattet, die mit Chips arbeiten. Besonders wenn die entstehenden Sensordaten sicherheitsrelevant sind, müssen die Chips resistent gegen Manipulation sein. In der Informatik macht man sich deshalb die kleinen, produktionsbedingten Abweichungen der Chips zunutze, um Hardware eindeutig identifizieren zu können. Physically Unclonable Functions, physikalisch unkopierbare Funktionen, nennen sich diese einzigartigen Codes, kurz PUFs.

Im DFG-Projekt NANOSEC2 untersuchen Forschende der Universität Passau, wie man PUFs mit verbesserten elektronischen Eigenschaften produzieren kann und greifen dafür auf die erhöhte Oberflächensensitivität von Nanomaterialien zurück. Konkret erforscht das Team um Prof. Dr. Stefan Katzenbeisser, Inhaber des Lehrstuhls für Technische Informatik, wie man integrierte Schaltungen basierend auf Nanomaterialien so adaptieren kann, dass sie mehr Zufall enthalten und die Chips dadurch eindeutiger identifizierbar werden.

Bei Versuchen mit Kohlenstoffnanoröhren-basierten Feld-Effekt-Transistoren (CNT-FETs) entstehen vier verschiedene PUF-Arten mit leitenden, halbleitenden, verändert halbleitenden und nichtleitenden Zellen. „Die Idee ist, dass diese PUF-Arten zufällig über die Oberfläche des Trägers verteilt sind. Aus der zufälligen Anordnung entsteht der eindeutig zuordenbare Fingerabdruck“, erklärt Prof. Dr. Stefan Katzenbeisser, der das Projekt zusammen mit Prof. Dr. Elif Bilge Kavun, Professorin für Sichere Intelligente Systeme, seitens der Universität Passau leitet. Durch den Einbau von mehr Zufall soll der Fingerabdruck nun weiter verbessert werden.

In einem zweiten Schritt soll die Widerstandsfähigkeit von PUF gegen Angriffe optimiert werden. „Immer dann, wenn an dem Sensor etwas hängt, was sehr teuer oder für Menschen gefährlich ist, wird diese Widerstandsfähigkeit immens wichtig“, so Dr.-Ing. Tolga Arul, Projektmitarbeiter bei NANOSEC2. „Deshalb werden wir uns die Sicherheit dieser Fingerabdrücke genauer ansehen: Kann man sie fälschen, manipulieren oder ungewollt auslesen?“

Das Forschungsprojekt heißt mit vollem Namen „Technologieplattform für nanomaterial-basierte PUF-Schaltungen mit hoher Entropie“ und ist eine Kooperation der Universität Passau mit der Technischen Universität Chemnitz. Es baut auf Erkenntnissen aus dem Vorgänger-Projekt NANOSEC auf. Das Vorhaben ist zum 1. April 2024 gestartet und wird von der Deutschen Forschungsgemeinschaft über eine Laufzeit von drei Jahren gefördert. Es ist Teil des DFG Schwerpunkts „Nanosecurity“.

Text: Janina Körber

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Katzenbeisser
Lehrstuhl für Technische Informatik
Universität Passau
Innstraße 43
Mail: Stefan.Katzenbeisser@uni-passau.de

http://www.uni-passau.de

Media Contact

Kathrin Haimerl Abteilung Kommunikation

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…