Saar-Physiker schaffen Grundlage für Schnelltests gegen Krankheiten wie Diabetes oder Malaria
Wenn das Blut durch unsere Adern rauscht, treibt die Strömung die roten Blutzellen in rasendem Tempo voran. Das Herz pumpt das Blut mit enormem Druck in die Arterien, dabei drückt es die Blutkörperchen gegen die Gefäßwände. Die winzigen roten Zellen – ein Bluttropfen enthält Millionen davon – kann man sich vorstellen wie elastische Gel-Plättchen mit dickerem Rand. Je nachdem wie hoch der Druck ist, mit dem sie durch die Gefäße schießen, verändern sie ihre Form.
„Bei hoher Geschwindigkeit des Blutflusses haben die Blutzellen eher die charakteristische Form eines Pantoffels, weshalb Forscher sie nach dem englischen ´Slipper` tauften. Ist die Geschwindigkeit niedriger, schwimmen sie eher durch die Mitte des Blutgefäßes und zeigen eine symmetrische Form, ähnlich einem Croissant“, erklärt Doktorand Alexander Kihm, der sich im Forscherteam von Professor Christian Wagner mit roten Blutzellen befasst. Das Fließverhalten komplexer Flüssigkeiten wie Blut ist ein Forschungsschwerpunkt der Experimentalphysiker.
Auch bei manchen Erkrankungen sind solche Formveränderungen von Blutzellen typisch. „So haben etwa Diabetes, Malaria oder die erblich bedingte Sichelzellenanämie Einfluss auf die Steifigkeit der Blutzellen“, erklärt Kihm. Ebenso können Medikamente ihre mechanischen Eigenschaften beeinflussen. Bisherige Analyseverfahren, die diese Veränderungen nachweisen, dauern lange, sind teuer und aufwändig.
Bei der klassischen Methode zählen Labor-Mitarbeiter unter dem Mikroskop die Blutzellen mit bestimmter Form. Neben den typischen charakteristischen Formen von Croissant oder Slipper existieren aber auch vielfältige nicht eindeutige Zwischenformen, die dieses Unterfangen nicht einfacher machen.
Kihm hat jetzt in seiner Grundlagenforschung die Basis für einen zuverlässigen Schnelltest gelegt. Der Physiker hat eine Analyse-Software entwickelt, die über Mustererkennung blitzschnell die Form großer Mengen von Zellen erkennt und klassifiziert.
„Das neuronale Netzwerk identifiziert mit künstlicher Intelligenz die Form der Blutzellen in der Probe anhand von charakteristischen Krümmungen und Wölbungen. Wir sind somit in der Lage, innerhalb von Sekunden Datensätze mit mehreren Tausend Zellen zu analysieren“, erklärt er.
Das Verfahren könnte daher der erste Schritt auf dem Weg zu einer schnellen Diagnose für Krankheiten sein, die mit einer Veränderung der Blutzellen-Form einhergehen. Hierzu muss jedoch noch weitergeforscht und -entwickelt werden. Die Software ist nicht nur bei Blutzellen anwendbar, sondern kann auch für andere Anwendungen angelernt werden.
Um sein neuronales Netzwerk zu trainieren, presste Kihm gewaschenes Blut, in dem nur noch rote Blutzellen schwimmen, durch hauchfeine Mikroröhrchen, die im Durchmesser kaum größer sind als die Zellen. Mit dem Hellfeldmikroskop beobachtete und klassifizierte er die Blutkörperchen. Anhand der so erfassten Datensätze erstellte Kihm mathematische Modelle und programmierte die Software zur Mustererkennung.
Die Volkswagen Stiftung (grant scheme Experiment!) und der Europäische Forschungsrat ERC (RELEVANCE sowie CoMMiTMenT) förderten die Forschungen. Derzeit ist Alexander Kihm bei einem Forschungsaufenthalt in Kanada an der McMaster University, um sein Verfahren weiterzuentwickeln.
Kontakt für die Medien:
Alexander Kihm: E-Mail: alexander.kihm@uni-saarland.de
Prof. Dr. Christian Wagner: Tel.: 0681 302-3003; E-Mail: c.wagner@mx.uni-saarland.de
http://agwagner.physik.uni-saarland.de/
Publikation: Kihm A, Kaestner L, Wagner C, Quint S (2018): Classification of red blood cell shapes in flow using outlier tolerant machine learning. PLoS Comp Biol 14(6): e1006278. https://doi.org/10.1371/journal.pcbi.1006278
Pressefotos für den kostenlosen Gebrauch finden Sie unter https://www.uni-saarland.de/pressefotos.html
Media Contact
Alle Nachrichten aus der Kategorie: Informationstechnologie
Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.
Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…